Namespaces
Variants

Standard library header <algorithm>

From cppreference.net
Standard library headers

このヘッダは algorithm ライブラリの一部です。

目次

インクルード

std::initializer_list クラステンプレート

クラス

名前空間 std::ranges で定義
戻り値の型 (C++20)
イテレータと関数オブジェクトを単一のユニットとして格納する方法を提供する
(クラステンプレート)
2つのイテレータを単一のユニットとして格納する方法を提供する
(クラステンプレート)
2つのイテレータを単一のユニットとして格納する方法を提供する
(クラステンプレート)
3つのイテレータを単一のユニットとして格納する方法を提供する
(クラステンプレート)
3つのイテレータを単一のユニットとして格納する方法を提供する
(クラステンプレート)
同じ型の2つのオブジェクトまたは参照を単一の単位として格納する方法を提供する
(クラステンプレート)
イテレータとブーリアンフラグを単一のユニットとして格納する方法を提供する
(クラステンプレート)
イテレータと値を単一のユニットとして格納する方法を提供する
(クラステンプレート)
イテレータと値を単一のユニットとして格納する方法を提供する
(クラステンプレート)

関数

非変更シーケンス操作
(C++11) (C++11) (C++11)
範囲内のすべての要素、いずれかの要素、またはいずれの要素に対しても述語が true であるかどうかをチェックする
(関数テンプレート)
単項 function object range の要素に適用する
(function template)
(C++17)
関数オブジェクトをシーケンスの先頭N個の要素に適用する
(関数テンプレート)
特定の条件を満たす要素の数を返す
(関数テンプレート)
二つの範囲が最初に異なる位置を見つける
(関数テンプレート)
特定の条件を満たす最初の要素を見つける
(関数テンプレート)
特定の範囲内で最後の要素シーケンスを検索する
(関数テンプレート)
要素の集合のいずれかを検索します
(関数テンプレート)
等しい(または指定された述語を満たす)最初の隣接する2つの要素を検索する
(関数テンプレート)
要素の範囲の最初の出現を検索する
(関数テンプレート)
範囲内で要素の連続する指定個数の最初の出現を検索する
(関数テンプレート)
変更操作シーケンス
要素の範囲を新しい場所にコピーします
(関数テンプレート)
(C++11)
指定された数の要素を新しい位置にコピーする
(関数テンプレート)
要素の範囲を逆順にコピーします
(関数テンプレート)
(C++11)
要素の範囲を新しい位置に移動する
(関数テンプレート)
要素の範囲を逆順に新しい位置へ移動する
(関数テンプレート)
指定された値を範囲内のすべての要素にコピー代入する
(関数テンプレート)
指定された値を範囲内のN個の要素にコピー代入する
(関数テンプレート)
要素の範囲に関数を適用し、結果を宛先範囲に格納します
(関数テンプレート)
連続する関数呼び出しの結果を範囲内の全ての要素に代入する
(関数テンプレート)
連続する関数呼び出しの結果を範囲内のN個の要素に割り当てる
(関数テンプレート)
特定の条件を満たす要素を削除する
(関数テンプレート)
特定の条件を満たす要素を除外して範囲の要素をコピーする
(関数テンプレート)
特定の条件を満たすすべての値を別の値で置き換える
(関数テンプレート)
範囲をコピーし、特定の条件を満たす要素を別の値で置換する
(関数テンプレート)
二つのオブジェクトの値を交換する
(関数テンプレート)
2つの範囲の要素を交換する
(関数テンプレート)
二つのイテレータが指す要素を交換する
(関数テンプレート)
範囲内の要素の順序を反転する
(関数テンプレート)
反転された範囲のコピーを作成する
(関数テンプレート)
範囲内の要素の順序を回転させる
(関数テンプレート)
要素の範囲をコピーして回転する
(関数テンプレート)
範囲内の要素をシフトする
(関数テンプレート)
(until C++17) (C++11)
範囲内の要素をランダムに並べ替える
(関数テンプレート)
(C++17)
シーケンスからN個のランダムな要素を選択する
(関数テンプレート)
連続する重複要素を範囲から削除する
(関数テンプレート)
連続する重複を含まない要素範囲のコピーを作成する
(関数テンプレート)
パーティショニング操作
指定された述語で範囲が分割されているかどうかを判定する
(関数テンプレート)
要素の範囲を2つのグループに分割する
(関数テンプレート)
範囲の要素を2つのグループに分割してコピーする
(関数テンプレート)
要素を相対的な順序を保持しながら二つのグループに分割する
(関数テンプレート)
分割済み範囲の分割点を特定する
(関数テンプレート)
ソート操作
(C++11)
範囲が昇順にソートされているかどうかをチェックする
(関数テンプレート)
最大のソート済み部分範囲を検索する
(関数テンプレート)
範囲を昇順にソートします
(関数テンプレート)
範囲の最初のN個の要素をソートする
(関数テンプレート)
要素の範囲をコピーして部分的にソートする
(関数テンプレート)
等しい要素間の順序を維持しながら要素の範囲をソートする
(関数テンプレート)
指定された要素によって分割されるように、指定された範囲を部分的にソートする
(関数テンプレート)
二分探索操作(ソート済み範囲に対する)
指定された値より 小さくない 最初の要素へのイテレータを返す
(関数テンプレート)
特定の値 より大きい 最初の要素へのイテレータを返す
(関数テンプレート)
部分的に順序付けられた範囲内に要素が存在するかどうかを判定する
(関数テンプレート)
特定のキーに一致する要素の範囲を返す
(関数テンプレート)
ソート済み範囲に対するその他の操作
二つのソート済み範囲をマージする
(関数テンプレート)
二つの順序付けられた範囲をその場でマージする
(関数テンプレート)
集合演算(ソート済み範囲に対する)
あるシーケンスが別のシーケンスの部分シーケンスである場合 true を返す
(関数テンプレート)
2つの集合の差を計算する
(関数テンプレート)
2つの集合の積集合を計算する
(関数テンプレート)
2つの集合の対称差を計算する
(関数テンプレート)
2つの集合の和集合を計算する
(関数テンプレート)
ヒープ操作
(C++11)
指定された範囲が最大ヒープであるかどうかをチェックする
(関数テンプレート)
最大ヒープである最大の部分範囲を見つける
(関数テンプレート)
要素の範囲から最大ヒープを作成する
(関数テンプレート)
最大ヒープに要素を追加する
(関数テンプレート)
最大ヒープから最大要素を削除する
(関数テンプレート)
最大ヒープを昇順にソートされた要素の範囲に変換する
(関数テンプレート)
最小値/最大値 操作
指定された値のうち大きい方を返す
(関数テンプレート)
範囲内の最大要素を返す
(関数テンプレート)
指定された値のうち小さい方を返す
(関数テンプレート)
範囲内の最小要素を返す
(関数テンプレート)
(C++11)
2つの要素のうち小さい方と大きい方を返す
(関数テンプレート)
範囲内の最小要素と最大要素を返す
(関数テンプレート)
(C++17)
値を境界値のペアの間にクランプする
(関数テンプレート)
比較演算
二つの要素セットが同一であるかどうかを判定する
(関数テンプレート)
一方の範囲が辞書順でもう一方より小さい場合に true を返す
(関数テンプレート)
2つの範囲を三方比較を使用して比較する
(関数テンプレート)
順列操作
あるシーケンスが別のシーケンスの順列であるかどうかを判定する
(関数テンプレート)
要素の範囲の次のより大きい辞書順の順列を生成する
(関数テンプレート)
要素の範囲の次のより小さい辞書順の順列を生成する
(関数テンプレート)

関数風エンティティ (C++20)

名前空間 std::ranges で定義
非変更シーケンス操作
述語が範囲内のすべての要素、いずれかの要素、またはどの要素に対しても true であるかどうかをチェックする
(アルゴリズム関数オブジェクト)
単項 関数オブジェクト レンジ の要素に適用する
(アルゴリズム関数オブジェクト)
関数オブジェクトをシーケンスの先頭N個の要素に適用する
(アルゴリズム関数オブジェクト)
特定の条件を満たす要素の数を返す
(アルゴリズム関数オブジェクト)
二つの範囲が最初に異なる位置を見つける
(アルゴリズム関数オブジェクト)
特定の条件を満たす最初の要素を見つける
(アルゴリズム関数オブジェクト)
特定の条件を満たす最後の要素を見つける
(アルゴリズム関数オブジェクト)
特定の範囲内で要素の最後のシーケンスを見つける
(アルゴリズム関数オブジェクト)
要素の集合のいずれかを検索する
(アルゴリズム関数オブジェクト)
等しい(または指定された述語を満たす)最初の隣接する2つの要素を検索する
(アルゴリズム関数オブジェクト)
要素の範囲の最初の出現を検索する
(アルゴリズム関数オブジェクト)
範囲内で指定された数の連続する要素の最初の出現を検索する
(アルゴリズム関数オブジェクト)
範囲が指定された要素または部分範囲を含むかどうかをチェックする
(アルゴリズム関数オブジェクト)
範囲が別の範囲で始まるかどうかをチェックする
(アルゴリズム関数オブジェクト)
範囲が別の範囲で終了するかどうかをチェックする
(アルゴリズム関数オブジェクト)
畳み込み操作
要素の範囲を左から畳み込む
(アルゴリズム関数オブジェクト)
要素の範囲を左畳み込みし、最初の要素を初期値として使用する
(アルゴリズム関数オブジェクト)
要素の範囲を右から畳み込む
(アルゴリズム関数オブジェクト)
要素の範囲を右畳み込みし、最後の要素を初期値として使用する
(アルゴリズム関数オブジェクト)
要素の範囲を左から畳み込み、 pair (イテレータ, 値) を返す
(アルゴリズム関数オブジェクト)
要素の範囲を左畳み込みし、最初の要素を初期値として使用し、 pair (iterator, optional ) を返す
(アルゴリズム関数オブジェクト)
シーケンス変更操作
要素の範囲を新しい場所にコピーする
(アルゴリズム関数オブジェクト)
指定された数の要素を新しい場所にコピーする
(アルゴリズム関数オブジェクト)
要素の範囲を逆順にコピーする
(アルゴリズム関数オブジェクト)
要素の範囲を新しい位置に移動する
(アルゴリズム関数オブジェクト)
要素の範囲を逆順に新しい位置へ移動する
(アルゴリズム関数オブジェクト)
指定された範囲の要素に特定の値を代入する
(アルゴリズム関数オブジェクト)
指定された数の要素に値を割り当てる
(アルゴリズム関数オブジェクト)
要素の範囲に関数を適用する
(アルゴリズム関数オブジェクト)
関数の結果を範囲に保存する
(アルゴリズム関数オブジェクト)
関数をN回適用した結果を保存する
(アルゴリズム関数オブジェクト)
特定の条件を満たす要素を削除する
(アルゴリズム関数オブジェクト)
特定の条件を満たす要素を除外して範囲の要素をコピーする
(アルゴリズム関数オブジェクト)
特定の条件を満たすすべての値を別の値で置き換える
(アルゴリズム関数オブジェクト)
範囲をコピーし、特定の条件を満たす要素を別の値で置き換える
(アルゴリズム関数オブジェクト)
2つの範囲の要素を交換する
(アルゴリズム関数オブジェクト)
範囲内の要素の順序を逆にする
(アルゴリズム関数オブジェクト)
範囲を反転したコピーを作成する
(アルゴリズム関数オブジェクト)
範囲内の要素の順序を回転させる
(アルゴリズム関数オブジェクト)
要素の範囲をコピーして回転する
(アルゴリズム関数オブジェクト)
範囲内の要素をシフトする
(アルゴリズム関数オブジェクト)
シーケンスからN個のランダムな要素を選択する
(アルゴリズム関数オブジェクト)
範囲内の要素をランダムに並べ替える
(アルゴリズム関数オブジェクト)
範囲内の連続する重複要素を削除する
(アルゴリズム関数オブジェクト)
連続する重複を含まない要素の範囲のコピーを作成する
(アルゴリズム関数オブジェクト)
パーティショニング操作
指定された述語によって範囲が分割されているかどうかを判定する
(アルゴリズム関数オブジェクト)
要素の範囲を2つのグループに分割する
(アルゴリズム関数オブジェクト)
範囲の要素を2つのグループに分けてコピーする
(アルゴリズム関数オブジェクト)
要素を二つのグループに分割し、それらの相対的な順序を保持する
(アルゴリズム関数オブジェクト)
分割済み範囲の分割点を特定する
(アルゴリズム関数オブジェクト)
ソート操作
範囲が昇順にソートされているかどうかをチェックする
(アルゴリズム関数オブジェクト)
最大のソート済み部分範囲を検索する
(アルゴリズム関数オブジェクト)
範囲を昇順にソートする
(アルゴリズム関数オブジェクト)
範囲の最初のN個の要素をソートする
(アルゴリズム関数オブジェクト)
要素の範囲をコピーして部分的にソートする
(アルゴリズム関数オブジェクト)
等しい要素間の順序を維持しながら範囲の要素をソートする
(アルゴリズム関数オブジェクト)
指定された要素によって分割されることを保証しながら、与えられた範囲を部分的にソートする
(アルゴリズム関数オブジェクト)
二分探索操作(ソート済み範囲に対する)
指定された値より 小さくない 最初の要素へのイテレータを返す
(アルゴリズム関数オブジェクト)
指定された値 より大きい 最初の要素へのイテレータを返す
(アルゴリズム関数オブジェクト)
半順序範囲内に要素が存在するかどうかを判定する
(アルゴリズム関数オブジェクト)
特定のキーに一致する要素の範囲を返す
(アルゴリズム関数オブジェクト)
ソート済み範囲に対するその他の操作
二つのソート済み範囲をマージする
(アルゴリズム関数オブジェクト)
2つの順序付けられた範囲をその場でマージする
(アルゴリズム関数オブジェクト)
集合演算(ソート済み範囲に対する)
あるシーケンスが別のシーケンスの部分シーケンスである場合に true を返す
(アルゴリズム関数オブジェクト)
2つの集合の差を計算する
(アルゴリズム関数オブジェクト)
2つの集合の積集合を計算する
(アルゴリズム関数オブジェクト)
2つの集合の対称差を計算する
(アルゴリズム関数オブジェクト)
2つの集合の和集合を計算する
(アルゴリズム関数オブジェクト)
ヒープ操作
指定された範囲が最大ヒープであるかどうかをチェックする
(アルゴリズム関数オブジェクト)
最大ヒープである最大の部分範囲を検索する
(アルゴリズム関数オブジェクト)
要素の範囲から最大ヒープを作成する
(アルゴリズム関数オブジェクト)
要素を最大ヒープに追加する
(アルゴリズム関数オブジェクト)
最大ヒープから最大要素を削除する
(アルゴリズム関数オブジェクト)
最大ヒープを昇順にソートされた要素の範囲に変換する
(アルゴリズム関数オブジェクト)
最小値/最大値操作
指定された値のうち最大のものを返す
(アルゴリズム関数オブジェクト)
範囲内の最大要素を返す
(アルゴリズム関数オブジェクト)
与えられた値のうち小さい方を返す
(アルゴリズム関数オブジェクト)
範囲内の最小要素を返す
(アルゴリズム関数オブジェクト)
2つの要素のうち小さい方と大きい方を返す
(アルゴリズム関数オブジェクト)
範囲内の最小要素と最大要素を返す
(アルゴリズム関数オブジェクト)
値を境界値のペアの間にクランプする
(アルゴリズム関数オブジェクト)
比較演算
2つの要素の集合が同じかどうかを判定する
(アルゴリズム関数オブジェクト)
ある範囲が別の範囲より辞書順で小さい場合に true を返す
(アルゴリズム関数オブジェクト)
順列操作
あるシーケンスが別のシーケンスの順列であるかどうかを判定する
(アルゴリズム関数オブジェクト)
要素の範囲の次のより大きい辞書順の順列を生成する
(アルゴリズム関数オブジェクト)
要素の範囲の次のより小さい辞書順の順列を生成する
(アルゴリズム関数オブジェクト)

概要

// 大部分はフリースタンディング
#include <initializer_list>
namespace std {
  namespace ranges {
    // アルゴリズム結果の型
    template<class I, class F>
      struct in_fun_result;
    template<class I1, class I2>
      struct in_in_result;
    template<class I, class O>
      struct in_out_result;
    template<class I1, class I2, class O>
      struct in_in_out_result;
    template<class I, class O1, class O2>
      struct in_out_out_result;
    template<class T>
      struct min_max_result;
    template<class I>
      struct in_found_result;
    template<class I, class T>
      struct in_value_result;
    template<class O, class T>
      struct out_value_result;
  }
  // 非変更シーケンス操作
  // すべての
  template<class InputIter, class Pred>
    constexpr bool all_of(InputIter first, InputIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    bool all_of(ExecutionPolicy&& exec, // freestanding-deleted
                ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr bool all_of(I first, S last, Pred pred, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr bool all_of(R&& r, Pred pred, Proj proj = {});
  }
  // any of
  template<class InputIter, class Pred>
    constexpr bool any_of(InputIter first, InputIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    bool any_of(ExecutionPolicy&& exec, // freestanding-deleted
                ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr bool any_of(I first, S last, Pred pred, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr bool any_of(R&& r, Pred pred, Proj proj = {});
  }
  // none of
  template<class InputIter, class Pred>
    constexpr bool none_of(InputIter first, InputIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    bool none_of(ExecutionPolicy&& exec, // freestanding-deleted
                 ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr bool none_of(I first, S last, Pred pred, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr bool none_of(R&& r, Pred pred, Proj proj = {});
  }
  // contains
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             class T = projected_value_t<I, Proj>>
      requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
      constexpr bool contains(I first, S last, const T& value, Proj proj = {});
    template<input_range R, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>>
      requires indirect_binary_predicate<ranges::equal_to,
                                         projected<iterator_t<R>, Proj>, const T*>
      constexpr bool contains(R&& r, const T& value, Proj proj = {});
    template<forward_iterator I1, sentinel_for<I1> S1,
             forward_iterator I2, sentinel_for<I2> S2,
             class Pred = ranges::equal_to, class Proj1 = identity,
             class Proj2 = identity>
      requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
      constexpr bool contains_subrange(I1 first1, S1 last1, I2 first2, S2 last2,
                                       Pred pred = {}, Proj1 proj1 = {},
                                       Proj2 proj2 = {});
    template<forward_range R1, forward_range R2,
             class Pred = ranges::equal_to, class Proj1 = identity,
             class Proj2 = identity>
      requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
      constexpr bool contains_subrange(R1&& r1, R2&& r2,
                                       Pred pred = {}, Proj1 proj1 = {},
                                       Proj2 proj2 = {});
  }
  // for each
  template<class InputIter, class Function>
    constexpr Function for_each(InputIter first, InputIter last, Function f);
  template<class ExecutionPolicy, class ForwardIter, class Function>
    void for_each(ExecutionPolicy&& exec, // freestanding-deleted
                  ForwardIter first, ForwardIter last, Function f);
  namespace ranges {
    template<class I, class F>
      using for_each_result = in_fun_result<I, F>;
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             indirectly_unary_invocable<projected<I, Proj>> Fun>
      constexpr for_each_result<I, Fun>
        for_each(I first, S last, Fun f, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirectly_unary_invocable<projected<iterator_t<R>, Proj>> Fun>
      constexpr for_each_result<borrowed_iterator_t<R>, Fun>
        for_each(R&& r, Fun f, Proj proj = {});
  }
  template<class InputIter, class Size, class Function>
    constexpr InputIter for_each_n(InputIter first, Size n, Function f);
  template<class ExecutionPolicy, class ForwardIter, class Size, class Function>
    ForwardIter for_each_n(ExecutionPolicy&& exec, // freestanding-deleted
                           ForwardIter first, Size n, Function f);
  namespace ranges {
    template<class I, class F>
      using for_each_n_result = in_fun_result<I, F>;
    template<input_iterator I, class Proj = identity,
             indirectly_unary_invocable<projected<I, Proj>> Fun>
      constexpr for_each_n_result<I, Fun>
        for_each_n(I first, iter_difference_t<I> n, Fun f, Proj proj = {});
  }
  // find
  template<class InputIter, class T = typename iterator_traits<InputIter>::value_type>
    constexpr InputIter find(InputIter first, InputIter last, const T& value);
  template<class ExecutionPolicy, class ForwardIter,
           class T = typename iterator_traits<InputIter>::value_type>
    ForwardIter find(ExecutionPolicy&& exec, // freestanding-deleted
                     ForwardIter first, ForwardIter last, const T& value);
  template<class InputIter, class Pred>
    constexpr InputIter find_if(InputIter first, InputIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    ForwardIter find_if(ExecutionPolicy&& exec, // freestanding-deleted
                        ForwardIter first, ForwardIter last, Pred pred);
  template<class InputIter, class Pred>
    constexpr InputIter find_if_not(InputIter first, InputIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    ForwardIter find_if_not(ExecutionPolicy&& exec, // freestanding-deleted
                            ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S, class Proj = identity
             class T = projected_value_t<I, Proj>>
      requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
      constexpr I find(I first, S last, const T& value, Proj proj = {});
    template<input_range R, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>>
      requires indirect_binary_predicate<ranges::equal_to,
                                         projected<iterator_t<R>, Proj>, const T*>
      constexpr borrowed_iterator_t<R>
        find(R&& r, const T& value, Proj proj = {});
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr I find_if(I first, S last, Pred pred, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr borrowed_iterator_t<R>
        find_if(R&& r, Pred pred, Proj proj = {});
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr I find_if_not(I first, S last, Pred pred, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr borrowed_iterator_t<R>
        find_if_not(R&& r, Pred pred, Proj proj = {});
  }
  // 最後を検索
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity>
      requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
      constexpr subrange<I> find_last(I first, S last, const T& value, Proj proj = {});
    template<forward_range R, class T, class Proj = identity>
      requires
        indirect_binary_predicate<ranges::equal_to,
            projected<iterator_t<R>, Proj>, const T*>
      constexpr borrowed_subrange_t<R> find_last(R&& r, const T& value, Proj proj = {});
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr subrange<I> find_last_if(I first, S last, Pred pred, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr borrowed_subrange_t<R> find_last_if(R&& r, Pred pred, Proj proj = {});
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr subrange<I> find_last_if_not(I first, S last, Pred pred, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr borrowed_subrange_t<R> find_last_if_not(R&& r, Pred pred, Proj proj = {});
  }
  // 末尾を検索
  template<class ForwardIter1, class ForwardIter2>
    constexpr ForwardIter1
      find_end(ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, ForwardIter2 last2);
  template<class ForwardIter1, class ForwardIter2, class BinaryPred>
    constexpr ForwardIter1
      find_end(ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, ForwardIter2 last2,
               BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    ForwardIter1
      find_end(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, ForwardIter2 last2);
  template<class ExecutionPolicy, class ForwardIter1,
           class ForwardIter2, class BinaryPred>
    ForwardIter1
      find_end(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, ForwardIter2 last2,
               BinaryPred pred);
  namespace ranges {
    template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
             sentinel_for<I2> S2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
      constexpr subrange<I1>
        find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                 Proj1 proj1 = {}, Proj2 proj2 = {});
    template<forward_range R1, forward_range R2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
      constexpr borrowed_subrange_t<R1>
        find_end(R1&& r1, R2&& r2, Pred pred = {},
                 Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  // 最初の検索
  template<class InputIter, class ForwardIter>
    constexpr InputIter
      find_first_of(InputIter first1, InputIter last1,
                    ForwardIter first2, ForwardIter last2);
  template<class InputIter, class ForwardIter, class BinaryPred>
    constexpr InputIter
      find_first_of(InputIter first1, InputIter last1,
                    ForwardIter first2, ForwardIter last2,
                    BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    ForwardIter1
      find_first_of(ExecutionPolicy&& exec, // freestanding-deleted
                    ForwardIter1 first1, ForwardIter1 last1,
                    ForwardIter2 first2, ForwardIter2 last2);
  template<class ExecutionPolicy, class ForwardIter1,
           class ForwardIter2, class BinaryPred>
    ForwardIter1
      find_first_of(ExecutionPolicy&& exec, // freestanding-deleted
                    ForwardIter1 first1, ForwardIter1 last1,
                    ForwardIter2 first2, ForwardIter2 last2,
                    BinaryPred pred);
  namespace ranges {
    template<input_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
             sentinel_for<I2> S2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
      constexpr I1 find_first_of(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                                 Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, forward_range R2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
      constexpr borrowed_iterator_t<R1>
        find_first_of(R1&& r1, R2&& r2, Pred pred = {},
                      Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  // adjacent find
  template<class ForwardIter>
    constexpr ForwardIter adjacent_find(ForwardIter first, ForwardIter last);
  template<class ForwardIter, class BinaryPred>
    constexpr ForwardIter adjacent_find(ForwardIter first, ForwardIter last,
                                        BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter>
    ForwardIter adjacent_find(ExecutionPolicy&& exec, // freestanding-deleted
                              ForwardIter first, ForwardIter last);
  template<class ExecutionPolicy, class ForwardIter, class BinaryPred>
    ForwardIter adjacent_find(ExecutionPolicy&& exec, // freestanding-deleted
                              ForwardIter first, ForwardIter last, BinaryPred pred);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_binary_predicate<projected<I, Proj>,
                                       projected<I, Proj>> Pred = ranges::equal_to>
      constexpr I adjacent_find(I first, S last, Pred pred = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_binary_predicate<projected<iterator_t<R>, Proj>,
                                       projected<iterator_t<R>, Proj>>
                                         Pred = ranges::equal_to>
      constexpr borrowed_iterator_t<R>
        adjacent_find(R&& r, Pred pred = {}, Proj proj = {});
  }
  // カウント
  template<class InputIter, class T = typename iterator_traits<InputIter>::value_type>
    constexpr typename iterator_traits<InputIter>::difference_type
      count(InputIter first, InputIter last, const T& value);
  template<class ExecutionPolicy, class ForwardIter,
           class T = typename iterator_traits<InputIterator>::value_type>
    typename iterator_traits<ForwardIter>::difference_type
      count(ExecutionPolicy&& exec, // freestanding-deleted
            ForwardIter first, ForwardIter last, const T& value);
  template<class InputIter, class Pred>
    constexpr typename iterator_traits<InputIter>::difference_type
      count_if(InputIter first, InputIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    typename iterator_traits<ForwardIter>::difference_type
      count_if(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             class T = projected_value_t<I, Proj>>
      requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
      constexpr iter_difference_t<I>
        count(I first, S last, const T& value, Proj proj = {});
    template<input_range R, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>>
      requires indirect_binary_predicate<ranges::equal_to,
                                         projected<iterator_t<R>, Proj>, const T*>
      constexpr range_difference_t<R>
        count(R&& r, const T& value, Proj proj = {});
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr iter_difference_t<I>
        count_if(I first, S last, Pred pred, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr range_difference_t<R>
        count_if(R&& r, Pred pred, Proj proj = {});
  }
  // mismatch
  template<class InputIter1, class InputIter2>
    constexpr pair<InputIter1, InputIter2>
      mismatch(InputIter1 first1, InputIter1 last1,
               InputIter2 first2);
  template<class InputIter1, class InputIter2, class BinaryPred>
    constexpr pair<InputIter1, InputIter2>
      mismatch(InputIter1 first1, InputIter1 last1,
               InputIter2 first2, BinaryPred pred);
  template<class InputIter1, class InputIter2>
    constexpr pair<InputIter1, InputIter2>
      mismatch(InputIter1 first1, InputIter1 last1,
               InputIter2 first2, InputIter2 last2);
  template<class InputIter1, class InputIter2, class BinaryPred>
    constexpr pair<InputIter1, InputIter2>
      mismatch(InputIter1 first1, InputIter1 last1,
               InputIter2 first2, InputIter2 last2,
               BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    pair<ForwardIter1, ForwardIter2>
      mismatch(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class BinaryPred>
    pair<ForwardIter1, ForwardIter2>
      mismatch(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    pair<ForwardIter1, ForwardIter2>
      mismatch(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, ForwardIter2 last2);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class BinaryPred>
    pair<ForwardIter1, ForwardIter2>
      mismatch(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, ForwardIter2 last2,
               BinaryPred pred);
  namespace ranges {
    template<class I1, class I2>
      using mismatch_result = in_in_result<I1, I2>;
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity,
             class Proj2 = identity>
      requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
      constexpr mismatch_result<I1, I2>
        mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                 Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2,
             class Pred = ranges::equal_to, class Proj1 = identity,
             class Proj2 = identity>
      requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
      constexpr mismatch_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
        mismatch(R1&& r1, R2&& r2, Pred pred = {},
                 Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  // equal
  template<class InputIter1, class InputIter2>
    constexpr bool equal(InputIter1 first1, InputIter1 last1,
                         InputIter2 first2);
  template<class InputIter1, class InputIter2, class BinaryPred>
    constexpr bool equal(InputIter1 first1, InputIter1 last1,
                         InputIter2 first2, BinaryPred pred);
  template<class InputIter1, class InputIter2>
    constexpr bool equal(InputIter1 first1, InputIter1 last1,
                         InputIter2 first2, InputIter2 last2);
  template<class InputIter1, class InputIter2, class BinaryPred>
    constexpr bool equal(InputIter1 first1, InputIter1 last1,
                         InputIter2 first2, InputIter2 last2,
                         BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    bool equal(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class BinaryPred>
    bool equal(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    bool equal(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, ForwardIter2 last2);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class BinaryPred>
    bool equal(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter1 first1, ForwardIter1 last1,
               ForwardIter2 first2, ForwardIter2 last2,
               BinaryPred pred);
  namespace ranges {
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity,
             class Proj2 = identity>
      requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
      constexpr bool equal(I1 first1, S1 last1, I2 first2, S2 last2,
                           Pred pred = {},
                           Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
      constexpr bool equal(R1&& r1, R2&& r2, Pred pred = {},
                           Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  // 順列判定
  template<class ForwardIter1, class ForwardIter2>
    constexpr bool is_permutation(ForwardIter1 first1, ForwardIter1 last1,
                                  ForwardIter2 first2);
  template<class ForwardIter1, class ForwardIter2, class BinaryPred>
    constexpr bool is_permutation(ForwardIter1 first1, ForwardIter1 last1,
                                  ForwardIter2 first2, BinaryPred pred);
  template<class ForwardIter1, class ForwardIter2>
    constexpr bool is_permutation(ForwardIter1 first1, ForwardIter1 last1,
                                  ForwardIter2 first2, ForwardIter2 last2);
  template<class ForwardIter1, class ForwardIter2, class BinaryPred>
    constexpr bool is_permutation(ForwardIter1 first1, ForwardIter1 last1,
                                  ForwardIter2 first2, ForwardIter2 last2,
                                  BinaryPred pred);
  namespace ranges {
    template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
             sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
             indirect_equivalence_relation<projected<I1, Proj1>,
                                           projected<I2, Proj2>> Pred = ranges::equal_to>
      constexpr bool is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,
                                    Pred pred = {},
                                    Proj1 proj1 = {}, Proj2 proj2 = {});
    template<forward_range R1, forward_range R2,
             class Proj1 = identity, class Proj2 = identity,
             indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>,
                                           projected<iterator_t<R2>, Proj2>>
                                           Pred = ranges::equal_to>
      constexpr bool is_permutation(R1&& r1, R2&& r2, Pred pred = {},
                                    Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  // 検索
  template<class ForwardIter1, class ForwardIter2>
    constexpr ForwardIter1
      search(ForwardIter1 first1, ForwardIter1 last1,
             ForwardIter2 first2, ForwardIter2 last2);
  template<class ForwardIter1, class ForwardIter2, class BinaryPred>
    constexpr ForwardIter1
      search(ForwardIter1 first1, ForwardIter1 last1,
             ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    ForwardIter1
      search(ExecutionPolicy&& exec, // freestanding-deleted
             ForwardIter1 first1, ForwardIter1 last1,
             ForwardIter2 first2, ForwardIter2 last2);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class BinaryPred>
    ForwardIter1
      search(ExecutionPolicy&& exec, // freestanding-deleted
             ForwardIter1 first1, ForwardIter1 last1,
             ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred);
  namespace ranges {
    template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
             sentinel_for<I2> S2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
      constexpr subrange<I1>
        search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
               Proj1 proj1 = {}, Proj2 proj2 = {});
    template<forward_range R1, forward_range R2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
      constexpr borrowed_subrange_t<R1>
        search(R1&& r1, R2&& r2, Pred pred = {},
               Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  template<class ForwardIter, class Size,
           class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr ForwardIter
      search_n(ForwardIter first, ForwardIter last,
               Size count, const T& value);
  template<class ForwardIter, class Size,
           class T = typename iterator_traits<ForwardIter>::value_type, class BinaryPred>
    constexpr ForwardIter
      search_n(ForwardIter first, ForwardIter last,
               Size count, const T& value, BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter, class Size,
           class T = typename iterator_traits<ForwardIter>::value_type>
    ForwardIter
      search_n(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter first, ForwardIter last,
               Size count, const T& value);
  template<class ExecutionPolicy, class ForwardIter, class Size,
           class T = typename iterator_traits<ForwardIter>::value_type, class BinaryPred>
    ForwardIter
      search_n(ExecutionPolicy&& exec, // freestanding-deleted
               ForwardIter first, ForwardIter last,
               Size count, const T& value, BinaryPred pred);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S,
             class Pred = ranges::equal_to, class Proj = identity,
             class T = projected_value_t<I, Proj>>
      requires indirectly_comparable<I, const T*, Pred, Proj>
      constexpr subrange<I>
        search_n(I first, S last, iter_difference_t<I> count,
                 const T& value, Pred pred = {}, Proj proj = {});
    template<forward_range R, class Pred = ranges::equal_to, class Proj = identity,
             projected_value_t<iterator_t<R>, Proj>>
      requires indirectly_comparable<iterator_t<R>, const T*, Pred, Proj>
      constexpr borrowed_subrange_t<R>
        search_n(R&& r, range_difference_t<R> count,
                 const T& value, Pred pred = {}, Proj proj = {});
  }
  template<class ForwardIter, class Searcher>
    constexpr ForwardIter
      search(ForwardIter first, ForwardIter last, const Searcher& searcher);
  namespace ranges {
    // で始まる
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
      constexpr bool starts_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                                 Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
      constexpr bool starts_with(R1&& r1, R2&& r2, Pred pred = {},
                                 Proj1 proj1 = {}, Proj2 proj2 = {});
    // ends with
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires (forward_iterator<I1> || sized_sentinel_for<S1, I1>) &&
               (forward_iterator<I2> || sized_sentinel_for<S2, I2>) &&
               indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
      constexpr bool ends_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
                               Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, class Pred = ranges::equal_to,
             class Proj1 = identity, class Proj2 = identity>
      requires (forward_range<R1> || sized_range<R1>) &&
               (forward_range<R2> || sized_range<R2>) &&
               indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
      constexpr bool ends_with(R1&& r1, R2&& r2, Pred pred = {},
                               Proj1 proj1 = {}, Proj2 proj2 = {});
    // fold
    template<class F>
    class /* 反転 */ {   // 説明専用
      F f;                  // 説明専用
    public:
      template<class T, class U> requires invocable<F&, U, T>
      invoke_result_t<F&, U, T> operator()(T&&, U&&);
    };
    template<class F, class T, class I, class U>
      concept /* indirectly-binary-left-foldable-impl */ =  // 説明専用
        movable<T> && movable<U> &&
        convertible_to<T, U> && invocable<F&, U, iter_reference_t<I>> &&
        assignable_from<U&, invoke_result_t<F&, U, iter_reference_t<I>>>;
    template<class F, class T, class I>
      concept /* 間接的に二進左畳み込み可能 */ =       // 説明専用
        copy_constructible<F> && indirectly_readable<I> &&
        invocable<F&, T, iter_reference_t<I>> &&
        convertible_to<invoke_result_t<F&, T, iter_reference_t<I>>,
               decay_t<invoke_result_t<F&, T, iter_reference_t<I>>>> &&
        /* indirectly-binary-left-foldable-impl */
             <F, T, I, decay_t<invoke_result_t<F&, T, iter_reference_t<I>>>>;
    template<class F, class T, class I>
      concept /* 間接的にバイナリ右畳み込み可能 */ =      // 説明専用
        /* 間接的に二進左畳み込み可能 */</* 反転 */<F>, T, I>;
    template<input_iterator I, sentinel_for<I> S, class T = iter_value_t<I>,
             /* 間接的に二進左畳み込み可能 */<T, I> F>
      constexpr auto fold_left(I first, S last, T init, F f);
    template<input_range R, class T = range_value_t<R>,
             /* 間接的に二進左畳み込み可能 */<T, iterator_t<R>> F>
      constexpr auto fold_left(R&& r, T init, F f);
    template<input_iterator I, sentinel_for<I> S,
             /* 間接的に二進左畳み込み可能 */<iter_value_t<I>, I> F>
      requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
      constexpr auto fold_left_first(I first, S last, F f);
    template<input_range R,
             /* 間接的に二進左畳み込み可能 */<range_value_t<R>, iterator_t<R>> F>
      requires constructible_from<range_value_t<R>, range_reference_t<R>>
      constexpr auto fold_left_first(R&& r, F f);
    template<bidirectional_iterator I, sentinel_for<I> S, class T = iter_value_t<I>,
             /* 間接的にバイナリ右畳み込み可能 */<T, I> F>
      constexpr auto fold_right(I first, S last, T init, F f);
    template<bidirectional_range R, class T = range_value_t<R>,
             /* 間接的にバイナリ右畳み込み可能 */<T, iterator_t<R>> F>
      constexpr auto fold_right(R&& r, T init, F f);
    template<bidirectional_iterator I, sentinel_for<I> S,
             /* 間接的にバイナリ右畳み込み可能 */<iter_value_t<I>, I> F>
      requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
    constexpr auto fold_right_last(I first, S last, F f);
    template<bidirectional_range R,
             /* 間接的にバイナリ右畳み込み可能 */<range_value_t<R>, iterator_t<R>> F>
      requires constructible_from<range_value_t<R>, range_reference_t<R>>
      constexpr auto fold_right_last(R&& r, F f);
    template<class I, class T>
      using fold_left_with_iter_result = in_value_result<I, T>;
    template<class I, class T>
      using fold_left_first_with_iter_result = in_value_result<I, T>;
    template<input_iterator I, sentinel_for<I> S, class T = iter_value_t<I>,
             /* 間接的に二進左畳み込み可能 */<T, I> F>
      constexpr /* 説明を参照 */ fold_left_with_iter(I first, S last, T init, F f);
    template<input_range R, class T = range_value_t<R>,
             /* 間接的に二進左畳み込み可能 */<T, iterator_t<R>> F>
      constexpr /* 説明を参照 */ fold_left_with_iter(R&& r, T init, F f);
    template<input_iterator I, sentinel_for<I> S,
             /* 間接的に二進左畳み込み可能 */<iter_value_t<I>, I> F>
      requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
      constexpr /* 説明を参照 */ fold_left_first_with_iter(I first, S last, F f);
    template<input_range R,
             /* 間接的に二進左畳み込み可能 */<range_value_t<R>, iterator_t<R>> F>
      requires constructible_from<range_value_t<R>, range_reference_t<R>>
      constexpr /* 説明を参照 */ fold_left_first_with_iter(R&& r, F f);
  }
  // 変更を加えるシーケンス操作
  // コピー
  template<class InputIter, class OutputIter>
    constexpr OutputIter copy(InputIter first, InputIter last,
                              OutputIter result);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    ForwardIter2 copy(ExecutionPolicy&& exec, // freestanding-deleted
                      ForwardIter1 first, ForwardIter1 last,
                      ForwardIter2 result);
  namespace ranges {
    template<class I, class O>
      using copy_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
      requires indirectly_copyable<I, O>
      constexpr copy_result<I, O> copy(I first, S last, O result);
    template<input_range R, weakly_incrementable O>
      requires indirectly_copyable<iterator_t<R>, O>
      constexpr copy_result<borrowed_iterator_t<R>, O> copy(R&& r, O result);
  }
  template<class InputIter, class Size, class OutputIter>
    constexpr OutputIter copy_n(InputIter first, Size n, OutputIter result);
  template<class ExecutionPolicy,
           class ForwardIter1, class Size, class ForwardIter2>
    ForwardIter2 copy_n(ExecutionPolicy&& exec, // freestanding-deleted
                        ForwardIter1 first, Size n, ForwardIter2 result);
  namespace ranges {
    template<class I, class O>
      using copy_n_result = in_out_result<I, O>;
    template<input_iterator I, weakly_incrementable O>
      requires indirectly_copyable<I, O>
      constexpr copy_n_result<I, O> copy_n(I first, iter_difference_t<I> n, O result);
  }
  template<class InputIter, class OutputIter, class Pred>
    constexpr OutputIter copy_if(InputIter first, InputIter last,
                                 OutputIter result, Pred pred);
  template<class ExecutionPolicy,
           class ForwardIter1, class ForwardIter2, class Pred>
    ForwardIter2 copy_if(ExecutionPolicy&& exec, // freestanding-deleted
                         ForwardIter1 first, ForwardIter1 last,
                         ForwardIter2 result, Pred pred);
  namespace ranges {
    template<class I, class O>
      using copy_if_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
             class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>
      requires indirectly_copyable<I, O>
      constexpr copy_if_result<I, O>
        copy_if(I first, S last, O result, Pred pred, Proj proj = {});
    template<input_range R, weakly_incrementable O, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      requires indirectly_copyable<iterator_t<R>, O>
      constexpr copy_if_result<borrowed_iterator_t<R>, O>
        copy_if(R&& r, O result, Pred pred, Proj proj = {});
  }
  template<class BidirectionalIter1, class BidirectionalIter2>
    constexpr BidirectionalIter2
      copy_backward(BidirectionalIter1 first, BidirectionalIter1 last,
                    BidirectionalIter2 result);
  namespace ranges {
    template<class I1, class I2>
      using copy_backward_result = in_out_result<I1, I2>;
    template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
      requires indirectly_copyable<I1, I2>
      constexpr copy_backward_result<I1, I2>
        copy_backward(I1 first, S1 last, I2 result);
    template<bidirectional_range R, bidirectional_iterator I>
      requires indirectly_copyable<iterator_t<R>, I>
      constexpr copy_backward_result<borrowed_iterator_t<R>, I>
        copy_backward(R&& r, I result);
  }
  // move
  template<class InputIter, class OutputIter>
    constexpr OutputIter move(InputIter first, InputIter last, OutputIter result);
  template<class ExecutionPolicy, class ForwardIter1,
           class ForwardIter2>
    ForwardIter2 move(ExecutionPolicy&& exec, // freestanding-deleted
                      ForwardIter1 first, ForwardIter1 last, ForwardIter2 result);
  namespace ranges {
    template<class I, class O>
      using move_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
      requires indirectly_movable<I, O>
      constexpr move_result<I, O> move(I first, S last, O result);
    template<input_range R, weakly_incrementable O>
      requires indirectly_movable<iterator_t<R>, O>
      constexpr move_result<borrowed_iterator_t<R>, O> move(R&& r, O result);
  }
  template<class BidirectionalIter1, class BidirectionalIter2>
    constexpr BidirectionalIter2
      move_backward(BidirectionalIter1 first, BidirectionalIter1 last,
                    BidirectionalIter2 result);
  namespace ranges {
    template<class I1, class I2>
      using move_backward_result = in_out_result<I1, I2>;
    template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
      requires indirectly_movable<I1, I2>
      constexpr move_backward_result<I1, I2>
        move_backward(I1 first, S1 last, I2 result);
    template<bidirectional_range R, bidirectional_iterator I>
      requires indirectly_movable<iterator_t<R>, I>
      constexpr move_backward_result<borrowed_iterator_t<R>, I>
        move_backward(R&& r, I result);
  }
  // swap
  template<class ForwardIter1, class ForwardIter2>
    constexpr ForwardIter2 swap_ranges(ForwardIter1 first1, ForwardIter1 last1,
                                       ForwardIter2 first2);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    ForwardIter2 swap_ranges(ExecutionPolicy&& exec, // freestanding-deleted
                             ForwardIter1 first1, ForwardIter1 last1,
                             ForwardIter2 first2);
  namespace ranges {
    template<class I1, class I2>
      using swap_ranges_result = in_in_result<I1, I2>;
    template<input_iterator I1, sentinel_for<I1> S1,
             input_iterator I2, sentinel_for<I2> S2>
      requires indirectly_swappable<I1, I2>
      constexpr swap_ranges_result<I1, I2>
        swap_ranges(I1 first1, S1 last1, I2 first2, S2 last2);
    template<input_range R1, input_range R2>
      requires indirectly_swappable<iterator_t<R1>, iterator_t<R2>>
      constexpr swap_ranges_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
        swap_ranges(R1&& r1, R2&& r2);
  }
  template<class ForwardIter1, class ForwardIter2>
    constexpr void iter_swap(ForwardIter1 a, ForwardIter2 b);
  // transform
  template<class InputIter, class OutputIter, class UnaryOperation>
    constexpr OutputIter
      transform(InputIter first1, InputIter last1,
                OutputIter result, UnaryOperation op);
  template<class InputIter1, class InputIter2, class OutputIter,
           class BinaryOperation>
    constexpr OutputIter
      transform(InputIter1 first1, InputIter1 last1,
                InputIter2 first2, OutputIter result,
                BinaryOperation binary_op);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class UnaryOperation>
    ForwardIter2
      transform(ExecutionPolicy&& exec, // freestanding-deleted
                ForwardIter1 first1, ForwardIter1 last1,
                ForwardIter2 result, UnaryOperation op);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter, class BinaryOperation>
    ForwardIter
      transform(ExecutionPolicy&& exec, // freestanding-deleted
                ForwardIter1 first1, ForwardIter1 last1,
                ForwardIter2 first2, ForwardIter result,
                BinaryOperation binary_op);
  namespace ranges {
    template<class I, class O>
      using unary_transform_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
             copy_constructible F, class Proj = identity>
      requires indirectly_writable<O, indirect_result_t<F&, projected<I, Proj>>>
      constexpr unary_transform_result<I, O>
        transform(I first1, S last1, O result, F op, Proj proj = {});
    template<input_range R, weakly_incrementable O,
             copy_constructible F, class Proj = identity>
      requires
        indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R>, Proj>>>
      constexpr unary_transform_result<borrowed_iterator_t<R>, O>
        transform(R&& r, O result, F op, Proj proj = {});
    template<class I1, class I2, class O>
      using binary_transform_result = in_in_out_result<I1, I2, O>;
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, weakly_incrementable O, copy_constructible F,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_writable<O, indirect_result_t<F&, projected<I1, Proj1>,
                                                        projected<I2, Proj2>>>
      constexpr binary_transform_result<I1, I2, O>
        transform(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                  F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, weakly_incrementable O,
             copy_constructible F, class Proj1 = identity, class Proj2 = identity>
      requires indirectly_writable
                   <O, indirect_result_t<F&, projected<iterator_t<R1>, Proj1>, 
                                         projected<iterator_t<R2>, Proj2>>>
      constexpr binary_transform_result<borrowed_iterator_t<R1>,
                                        borrowed_iterator_t<R2>, O>
        transform(R1&& r1, R2&& r2, O result,
                  F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  // replace
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr void replace(ForwardIter first, ForwardIter last,
                           const T& old_value, const T& new_value);
  template<class ExecutionPolicy, class ForwardIter,
           class T = typename iterator_traits<ForwardIter>::value_type>
    void replace(ExecutionPolicy&& exec, // freestanding-deleted
                 ForwardIter first, ForwardIter last,
                 const T& old_value, const T& new_value);
  template<class ForwardIter, class Pred,
           class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr void replace_if(ForwardIter first, ForwardIter last,
                              Pred pred, const T& new_value);
  template<class ExecutionPolicy, class ForwardIter, class Pred,
           class T = typename iterator_traits<ForwardIter>::value_type>
    void replace_if(ExecutionPolicy&& exec, // freestanding-deleted
                    ForwardIter first, ForwardIter last,
                    Pred pred, const T& new_value);
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S,
             class Proj = identity, class T1 = projected_value_t<I, Proj>, class T2 = T1>
      requires indirectly_writable<I, const T2&> &&
               indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>
      constexpr I replace(I first, S last, const T1& old_value,
                          const T2& new_value, Proj proj = {});
    template<input_range R, class Proj = identity,
             class T1 = projected_value_t<iterator_t<R>, Proj>, class T2 = T1>
      requires indirectly_writable<iterator_t<R>, const T2&> &&
               indirect_binary_predicate<ranges::equal_to,
                                         projected<iterator_t<R>, Proj>, const T1*>
      constexpr borrowed_iterator_t<R> replace(R&& r, const T1& old_value,
                                               const T2& new_value, Proj proj = {});
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             class T = projected_value_t<I, Proj>,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      requires indirectly_writable<I, const T&>
      constexpr I replace_if(I first, S last, Pred pred,
                             const T& new_value, Proj proj = {});
    template<input_range R, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      requires indirectly_writable<iterator_t<R>, const T&>
      constexpr borrowed_iterator_t<R> replace_if(R&& r, Pred pred,
                                                  const T& new_value, Proj proj = {});
  }
  template<class InputIter, class OutputIter, class T>
    constexpr OutputIter replace_copy(InputIter first, InputIter last, OutputIter result,
                                      const T& old_value, const T& new_value);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class T>
    ForwardIter2 replace_copy(ExecutionPolicy&& exec, // freestanding-deleted
                              ForwardIter1 first, ForwardIter1 last, ForwardIter2 result,
                              const T& old_value, const T& new_value);
  template<class InputIter, class OutputIter, class Pred,
           class T = typename iterator_traits<OutputIter>::value_type>
    constexpr OutputIter replace_copy_if(InputIter first, InputIter last,
                                         OutputIter result,
                                         Pred pred, const T& new_value);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class Pred, class T = typename iterator_traits<ForwardIter2>::value_type>
    ForwardIter2 replace_copy_if(ExecutionPolicy&& exec, // freestanding-deleted
                                 ForwardIter1 first, ForwardIter1 last,
                                 ForwardIter2 result,
                                 Pred pred, const T& new_value);
  namespace ranges {
    template<class I, class O>
      using replace_copy_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S, class O, class Proj = identity,
             class T1 = projected_value_t<I, Proj>, class T2 = iter_value_t<O>>
      requires indirectly_copyable<I, O> &&
               indirect_binary_predicate<ranges::equal_to,
                                         projected<I, Proj>, const T1*> &&
               output_iterator<O, const T2&>
      constexpr replace_copy_result<I, O>
        replace_copy(I first, S last, O result, const T1& old_value,
                     const T2& new_value, Proj proj = {});
    template<input_range R, class O, class Proj = identity,
             class T1 = projected_value_t<iterator_t<R>, Proj>,
             class T2 = iter_value_t<O>>
      requires indirectly_copyable<iterator_t<R>, O> &&
               indirect_binary_predicate<ranges::equal_to,
                                         projected<iterator_t<R>, Proj>, const T1*> &&
               output_iterator<O, const T2&>
      constexpr replace_copy_result<borrowed_iterator_t<R>, O>
        replace_copy(R&& r, O result, const T1& old_value,
                     const T2& new_value, Proj proj = {});
    template<class I, class O>
      using replace_copy_if_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S, class O, class T = iter_value_t<O>,
             class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>
      requires indirectly_copyable<I, O> && output_iterator<O, const T&>
      constexpr replace_copy_if_result<I, O>
        replace_copy_if(I first, S last, O result, Pred pred,
                        const T& new_value, Proj proj = {});
    template<input_range R, class O, class T = iter_value_t<O>, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      requires indirectly_copyable<iterator_t<R>, O> && output_iterator<O, const T&>
      constexpr replace_copy_if_result<borrowed_iterator_t<R>, O>
        replace_copy_if(R&& r, O result, Pred pred,
                        const T& new_value, Proj proj = {});
  }
  // fill
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr void fill(ForwardIter first, ForwardIter last, const T& value);
  template<class ExecutionPolicy, class ForwardIter,
           class T = typename iterator_traits<ForwardIter>::value_type>
    void fill(ExecutionPolicy&& exec, // freestanding-deleted
              ForwardIter first, ForwardIter last, const T& value);
  template<class OutputIter, class Size,
           class T = typename iterator_traits<OutputIter>::value_type>
    constexpr OutputIter fill_n(OutputIter first, Size n, const T& value);
  template<class ExecutionPolicy, class ForwardIter,
           class Size, class T = typename iterator_traits<OutputIter>::value_type>
    ForwardIter fill_n(ExecutionPolicy&& exec, // freestanding-deleted
                       ForwardIter first, Size n, const T& value);
  namespace ranges {
    template<class O, sentinel_for<O> S, class T = iter_value_t<O>>
      requires output_iterator<O, const T&>
      constexpr O fill(O first, S last, const T& value);
    template<class R, class T = range_value_t<R>>
      requires output_range<R, const T&>
      constexpr borrowed_iterator_t<R> fill(R&& r, const T& value);
    template<class O, class T = iter_value_t<O>>
      requires output_iterator<O, const T&>
      constexpr O fill_n(O first, iter_difference_t<O> n, const T& value);
  }
  // generate
  template<class ForwardIter, class Generator>
    constexpr void generate(ForwardIter first, ForwardIter last, Generator gen);
  template<class ExecutionPolicy, class ForwardIter, class Generator>
    void generate(ExecutionPolicy&& exec, // freestanding-deleted
                  ForwardIter first, ForwardIter last, Generator gen);
  template<class OutputIter, class Size, class Generator>
    constexpr OutputIter generate_n(OutputIter first, Size n, Generator gen);
  template<class ExecutionPolicy, class ForwardIter, class Size, class Generator>
    ForwardIter generate_n(ExecutionPolicy&& exec, // freestanding-deleted
                           ForwardIter first, Size n, Generator gen);
  namespace ranges {
    template<input_or_output_iterator O, sentinel_for<O> S, copy_constructible F>
      requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
      constexpr O generate(O first, S last, F gen);
    template<class R, copy_constructible F>
      requires invocable<F&> && output_range<R, invoke_result_t<F&>>
      constexpr borrowed_iterator_t<R> generate(R&& r, F gen);
    template<input_or_output_iterator O, copy_constructible F>
      requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
      constexpr O generate_n(O first, iter_difference_t<O> n, F gen);
  }
  // 削除
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr ForwardIter remove(ForwardIter first, ForwardIter last, const T& value);
  template<class ExecutionPolicy, class ForwardIter,
           class T = typename iterator_traits<ForwardIter>::value_type>
    ForwardIter remove(ExecutionPolicy&& exec, // freestanding-deleted
                       ForwardIter first, ForwardIter last, const T& value);
  template<class ForwardIter, class Pred>
    constexpr ForwardIter remove_if(ForwardIter first, ForwardIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    ForwardIter remove_if(ExecutionPolicy&& exec, // freestanding-deleted
                          ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<permutable I, sentinel_for<I> S, class Proj = identity,
             class T = projected_value_t<I, Proj>>
      requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
      constexpr subrange<I> remove(I first, S last, const T& value, Proj proj = {});
    template<forward_range R, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>>
      requires permutable<iterator_t<R>> &&
               indirect_binary_predicate<ranges::equal_to,
                                         projected<iterator_t<R>, Proj>, const T*>
      constexpr borrowed_subrange_t<R> remove(R&& r, const T& value, Proj proj = {});
    template<permutable I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr subrange<I> remove_if(I first, S last, Pred pred, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      requires permutable<iterator_t<R>>
      constexpr borrowed_subrange_t<R> remove_if(R&& r, Pred pred, Proj proj = {});
  }
  template<class InputIter, class OutputIter,
           class T = typename iterator_traits<InputIter>::value_type>
    constexpr OutputIter remove_copy(InputIter first, InputIter last,
                                     OutputIter result, const T& value);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class T = typename iterator_traits<ForwardIter1>::value_type>
    ForwardIter2 remove_copy(ExecutionPolicy&& exec, // freestanding-deleted
                             ForwardIter1 first, ForwardIter1 last,
                             ForwardIter2 result, const T& value);
  template<class InputIter, class OutputIter, class Pred>
    constexpr OutputIter remove_copy_if(InputIter first, InputIter last,
                                        OutputIter result, Pred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class Pred>
    ForwardIter2 remove_copy_if(ExecutionPolicy&& exec, // freestanding-deleted
                                ForwardIter1 first, ForwardIter1 last,
                                ForwardIter2 result, Pred pred);
  namespace ranges {
    template<class I, class O>
      using remove_copy_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
             class Proj = identity, class T = projected_value_t<I, Proj>>
      requires indirectly_copyable<I, O> &&
               indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
      constexpr remove_copy_result<I, O>
        remove_copy(I first, S last, O result, const T& value, Proj proj = {});
    template<input_range R, weakly_incrementable O, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>>
      requires indirectly_copyable<iterator_t<R>, O> &&
               indirect_binary_predicate<ranges::equal_to,
                                         projected<iterator_t<R>, Proj>, const T*>
      constexpr remove_copy_result<borrowed_iterator_t<R>, O>
        remove_copy(R&& r, O result, const T& value, Proj proj = {});
    template<class I, class O>
      using remove_copy_if_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
             class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>
      requires indirectly_copyable<I, O>
      constexpr remove_copy_if_result<I, O>
        remove_copy_if(I first, S last, O result, Pred pred, Proj proj = {});
    template<input_range R, weakly_incrementable O, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      requires indirectly_copyable<iterator_t<R>, O>
      constexpr remove_copy_if_result<borrowed_iterator_t<R>, O>
        remove_copy_if(R&& r, O result, Pred pred, Proj proj = {});
  }
  // unique
  template<class ForwardIter>
    constexpr ForwardIter unique(ForwardIter first, ForwardIter last);
  template<class ForwardIter, class BinaryPred>
    constexpr ForwardIter unique(ForwardIter first, ForwardIter last, BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter>
    ForwardIter unique(ExecutionPolicy&& exec, // freestanding-deleted
                       ForwardIter first, ForwardIter last);
  template<class ExecutionPolicy, class ForwardIter, class BinaryPred>
    ForwardIter unique(ExecutionPolicy&& exec, // freestanding-deleted
                       ForwardIter first, ForwardIter last, BinaryPred pred);
  namespace ranges {
    template<permutable I, sentinel_for<I> S, class Proj = identity,
             indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>
      constexpr subrange<I> unique(I first, S last, C comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_equivalence_relation
                 <projected<iterator_t<R>, Proj>> C = ranges::equal_to>
      requires permutable<iterator_t<R>>
      constexpr borrowed_subrange_t<R> unique(R&& r, C comp = {}, Proj proj = {});
  }
  template<class InputIter, class OutputIter>
    constexpr OutputIter unique_copy(InputIter first, InputIter last,
                                     OutputIter result);
  template<class InputIter, class OutputIter, class BinaryPred>
    constexpr OutputIter unique_copy(InputIter first, InputIter last,
                                     OutputIter result, BinaryPred pred);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    ForwardIter2 unique_copy(ExecutionPolicy&& exec, // freestanding-deleted
                             ForwardIter1 first, ForwardIter1 last,
                             ForwardIter2 result);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class BinaryPred>
    ForwardIter2 unique_copy(ExecutionPolicy&& exec, // freestanding-deleted
                             ForwardIter1 first, ForwardIter1 last,
                             ForwardIter2 result, BinaryPred pred);
  namespace ranges {
    template<class I, class O>
      using unique_copy_result = in_out_result<I, O>;
    template<input_iterator I, sentinel_for<I> S,
             weakly_incrementable O, class Proj = identity,
             indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>
      requires indirectly_copyable<I, O> &&
               (forward_iterator<I> ||
                (input_iterator<O> && same_as<iter_value_t<I>, iter_value_t<O>>) ||
                indirectly_copyable_storable<I, O>)
      constexpr unique_copy_result<I, O>
        unique_copy(I first, S last, O result, C comp = {}, Proj proj = {});
    template<input_range R, weakly_incrementable O, class Proj = identity,
             indirect_equivalence_relation
                 <projected<iterator_t<R>, Proj>> C = ranges::equal_to>
      requires indirectly_copyable<iterator_t<R>, O> &&
               (forward_iterator<iterator_t<R>> ||
                (input_iterator<O> && same_as<range_value_t<R>, iter_value_t<O>>) ||
                indirectly_copyable_storable<iterator_t<R>, O>)
      constexpr unique_copy_result<borrowed_iterator_t<R>, O>
        unique_copy(R&& r, O result, C comp = {}, Proj proj = {});
  }
  // 逆順
  template<class BidirectionalIter>
    constexpr void reverse(BidirectionalIter first, BidirectionalIter last);
  template<class ExecutionPolicy, class BidirectionalIter>
    void reverse(ExecutionPolicy&& exec, // freestanding-deleted
                 BidirectionalIter first, BidirectionalIter last);
  namespace ranges {
    template<bidirectional_iterator I, sentinel_for<I> S>
      requires permutable<I>
      constexpr I reverse(I first, S last);
    template<bidirectional_range R>
      requires permutable<iterator_t<R>>
      constexpr borrowed_iterator_t<R> reverse(R&& r);
  }
  template<class BidirectionalIter, class OutputIter>
    constexpr OutputIter reverse_copy(BidirectionalIter first, BidirectionalIter last,
                                      OutputIter result);
  template<class ExecutionPolicy, class BidirectionalIter, class ForwardIter>
    ForwardIter reverse_copy(ExecutionPolicy&& exec, // freestanding-deleted
                             BidirectionalIter first, BidirectionalIter last,
                             ForwardIter result);
  namespace ranges {
    template<class I, class O>
      using reverse_copy_result = in_out_result<I, O>;
    template<bidirectional_iterator I, sentinel_for<I> S, weakly_incrementable O>
      requires indirectly_copyable<I, O>
      constexpr reverse_copy_result<I, O>
        reverse_copy(I first, S last, O result);
    template<bidirectional_range R, weakly_incrementable O>
      requires indirectly_copyable<iterator_t<R>, O>
      constexpr reverse_copy_result<borrowed_iterator_t<R>, O>
        reverse_copy(R&& r, O result);
  }
  // 回転
  template<class ForwardIter>
    constexpr ForwardIter rotate(ForwardIter first, ForwardIter middle, ForwardIter last);
  template<class ExecutionPolicy, class ForwardIter>
    ForwardIter rotate(ExecutionPolicy&& exec, // freestanding-deleted
                       ForwardIter first, ForwardIter middle, ForwardIter last);
  namespace ranges {
    template<permutable I, sentinel_for<I> S>
      constexpr subrange<I> rotate(I first, I middle, S last);
    template<forward_range R>
      requires permutable<iterator_t<R>>
      constexpr borrowed_subrange_t<R> rotate(R&& r, iterator_t<R> middle);
  }
  template<class ForwardIter, class OutputIter>
    constexpr OutputIter rotate_copy(ForwardIter first, ForwardIter middle,
                                     ForwardIter last, OutputIter result);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    ForwardIter2 rotate_copy(ExecutionPolicy&& exec, // freestanding-deleted
                             ForwardIter1 first, ForwardIter1 middle,
                             ForwardIter1 last, ForwardIter2 result);
  namespace ranges {
    template<class I, class O>
      using rotate_copy_result = in_out_result<I, O>;
    template<forward_iterator I, sentinel_for<I> S, weakly_incrementable O>
      requires indirectly_copyable<I, O>
      constexpr rotate_copy_result<I, O>
        rotate_copy(I first, I middle, S last, O result);
    template<forward_range R, weakly_incrementable O>
      requires indirectly_copyable<iterator_t<R>, O>
      constexpr rotate_copy_result<borrowed_iterator_t<R>, O>
        rotate_copy(R&& r, iterator_t<R> middle, O result);
  }
  // サンプル
  template<class PopulationIter, class SampleIter,
           class Distance, class UniformRandomBitGenerator>
    SampleIter sample(PopulationIter first, PopulationIter last,
                      SampleIter out, Distance n, UniformRandomBitGenerator&& g);
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S,
             weakly_incrementable O, class Gen>
      requires (forward_iterator<I> || random_access_iterator<O>) &&
               indirectly_copyable<I, O> &&
               uniform_random_bit_generator<remove_reference_t<Gen>>
      O sample(I first, S last, O out, iter_difference_t<I> n, Gen&& g);
    template<input_range R, weakly_incrementable O, class Gen>
      requires (forward_range<R> || random_access_iterator<O>) &&
               indirectly_copyable<iterator_t<R>, O> &&
               uniform_random_bit_generator<remove_reference_t<Gen>>
      O sample(R&& r, O out, range_difference_t<R> n, Gen&& g);
  }
  // シャッフル
  template<class RandomAccessIter, class UniformRandomBitGenerator>
    void shuffle(RandomAccessIter first, RandomAccessIter last,
                 UniformRandomBitGenerator&& g);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S, class Gen>
      requires permutable<I> &&
               uniform_random_bit_generator<remove_reference_t<Gen>>
      I shuffle(I first, S last, Gen&& g);
    template<random_access_range R, class Gen>
      requires permutable<iterator_t<R>> &&
               uniform_random_bit_generator<remove_reference_t<Gen>>
      borrowed_iterator_t<R> shuffle(R&& r, Gen&& g);
  }
  // シフト
  template<class ForwardIter>
    constexpr ForwardIter
      shift_left(ForwardIter first, ForwardIter last,
                 typename iterator_traits<ForwardIter>::difference_type n);
  template<class ExecutionPolicy, class ForwardIter>
    ForwardIter
      shift_left(ExecutionPolicy&& exec, // freestanding-deleted
                 ForwardIter first, ForwardIter last,
                 typename iterator_traits<ForwardIter>::difference_type n);
  namespace ranges {
    template<permutable I, sentinel_for<I> S>
      constexpr subrange<I> shift_left(I first, S last, iter_difference_t<I> n);
    template<forward_range R>
      requires permutable<iterator_t<R>>
      constexpr borrowed_subrange_t<R> shift_left(R&& r, range_difference_t<R> n);
  }
  template<class ForwardIter>
    constexpr ForwardIter
      shift_right(ForwardIter first, ForwardIter last,
                  typename iterator_traits<ForwardIter>::difference_type n);
  template<class ExecutionPolicy, class ForwardIter>
    ForwardIter
      shift_right(ExecutionPolicy&& exec, // freestanding-deleted
                  ForwardIter first, ForwardIter last,
                  typename iterator_traits<ForwardIter>::difference_type n);
  namespace ranges {
    template<permutable I, sentinel_for<I> S>
      constexpr subrange<I> shift_right(I first, S last, iter_difference_t<I> n);
    template<forward_range R>
      requires permutable<iterator_t<R>>
      constexpr borrowed_subrange_t<R> shift_right(R&& r, range_difference_t<R> n);
  }
  // ソートおよび関連操作
  // ソート
  template<class RandomAccessIter>
    constexpr void sort(RandomAccessIter first, RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr void sort(RandomAccessIter first, RandomAccessIter last, Compare comp);
  template<class ExecutionPolicy, class RandomAccessIter>
    void sort(ExecutionPolicy&& exec, // freestanding-deleted
              RandomAccessIter first, RandomAccessIter last);
  template<class ExecutionPolicy, class RandomAccessIter, class Compare>
    void sort(ExecutionPolicy&& exec, // freestanding-deleted
              RandomAccessIter first, RandomAccessIter last, Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr I sort(I first, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr borrowed_iterator_t<R> sort(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class RandomAccessIter>
    void stable_sort(RandomAccessIter first, RandomAccessIter last);               // ホストされた
  template<class RandomAccessIter, class Compare>
    void stable_sort(RandomAccessIter first, RandomAccessIter last, Compare comp); // ホスト環境
  template<class ExecutionPolicy, class RandomAccessIter>
    void stable_sort(ExecutionPolicy&& exec,                                       // ホスト環境
                     RandomAccessIter first, RandomAccessIter last);
  template<class ExecutionPolicy, class RandomAccessIter, class Compare>
    void stable_sort(ExecutionPolicy&& exec,                                       // ホスト環境
                     RandomAccessIter first, RandomAccessIter last, Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      I stable_sort(I first, S last, Comp comp = {}, Proj proj = {});              // ホスト環境
    template<random_access_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      borrowed_iterator_t<R> stable_sort(R&& r, Comp comp = {}, Proj proj = {});   // ホスト環境
  }
  template<class RandomAccessIter>
    constexpr void partial_sort(RandomAccessIter first, RandomAccessIter middle,
                                RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr void partial_sort(RandomAccessIter first, RandomAccessIter middle,
                                RandomAccessIter last, Compare comp);
  template<class ExecutionPolicy, class RandomAccessIter>
    void partial_sort(ExecutionPolicy&& exec, // freestanding-deleted
                      RandomAccessIter first, RandomAccessIter middle,
                      RandomAccessIter last);
  template<class ExecutionPolicy, class RandomAccessIter, class Compare>
    void partial_sort(ExecutionPolicy&& exec, // freestanding-deleted
                      RandomAccessIter first, RandomAccessIter middle,
                      RandomAccessIter last, Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr I
        partial_sort(I first, I middle, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr borrowed_iterator_t<R>
        partial_sort(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {});
  }
  template<class InputIter, class RandomAccessIter>
    constexpr RandomAccessIter
      partial_sort_copy(InputIter first, InputIter last,
                        RandomAccessIter result_first,
                        RandomAccessIter result_last);
  template<class InputIter, class RandomAccessIter, class Compare>
    constexpr RandomAccessIter
      partial_sort_copy(InputIter first, InputIter last,
                        RandomAccessIter result_first,
                        RandomAccessIter result_last, Compare comp);
  template<class ExecutionPolicy, class ForwardIter, class RandomAccessIter>
    RandomAccessIter
      partial_sort_copy(ExecutionPolicy&& exec, // freestanding-deleted
                        ForwardIter first, ForwardIter last,
                        RandomAccessIter result_first,
                        RandomAccessIter result_last);
  template<class ExecutionPolicy, class ForwardIter, class RandomAccessIter,
           class Compare>
    RandomAccessIter
      partial_sort_copy(ExecutionPolicy&& exec, // freestanding-deleted
                        ForwardIter first, ForwardIter last,
                        RandomAccessIter result_first,
                        RandomAccessIter result_last, Compare comp);
  namespace ranges {
    template<class I, class O>
      using partial_sort_copy_result = in_out_result<I, O>;
    template<input_iterator I1, sentinel_for<I1> S1,
             random_access_iterator I2, sentinel_for<I2> S2,
             class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
      requires indirectly_copyable<I1, I2> && sortable<I2, Comp, Proj2> &&
               indirect_strict_weak_order<Comp, projected<I1, Proj1>,
                                          projected<I2, Proj2>>
      constexpr partial_sort_copy_result<I1, I2>
        partial_sort_copy(I1 first, S1 last, I2 result_first, S2 result_last,
                          Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, random_access_range R2, class Comp = ranges::less,
             class Proj1 = identity, class Proj2 = identity>
      requires indirectly_copyable<iterator_t<R1>, iterator_t<R2>> &&
               sortable<iterator_t<R2>, Comp, Proj2> &&
               indirect_strict_weak_order<Comp, projected<iterator_t<R1>, Proj1>,
                                          projected<iterator_t<R2>, Proj2>>
      constexpr partial_sort_copy_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>
        partial_sort_copy(R1&& r, R2&& result_r, Comp comp = {},
                          Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  template<class ForwardIter>
    constexpr bool is_sorted(ForwardIter first, ForwardIter last);
  template<class ForwardIter, class Compare>
    constexpr bool is_sorted(ForwardIter first, ForwardIter last, Compare comp);
  template<class ExecutionPolicy, class ForwardIter>
    bool is_sorted(ExecutionPolicy&& exec, // freestanding-deleted
                   ForwardIter first, ForwardIter last);
  template<class ExecutionPolicy, class ForwardIter, class Compare>
    bool is_sorted(ExecutionPolicy&& exec, // freestanding-deleted
                   ForwardIter first, ForwardIter last, Compare comp);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
      constexpr bool is_sorted(I first, S last, Comp comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr bool is_sorted(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class ForwardIter>
    constexpr ForwardIter is_sorted_until(ForwardIter first, ForwardIter last);
  template<class ForwardIter, class Compare>
    constexpr ForwardIter is_sorted_until(ForwardIter first, ForwardIter last,
                                          Compare comp);
  template<class ExecutionPolicy, class ForwardIter>
    ForwardIter is_sorted_until(ExecutionPolicy&& exec, // freestanding-deleted
                                ForwardIter first, ForwardIter last);
  template<class ExecutionPolicy, class ForwardIter, class Compare>
    ForwardIter is_sorted_until(ExecutionPolicy&& exec, // freestanding-deleted
                                ForwardIter first, ForwardIter last,
                                Compare comp);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
      constexpr I is_sorted_until(I first, S last, Comp comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr borrowed_iterator_t<R>
        is_sorted_until(R&& r, Comp comp = {}, Proj proj = {});
  }
  // N番目の要素
  template<class RandomAccessIter>
    constexpr void nth_element(RandomAccessIter first, RandomAccessIter nth,
                               RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr void nth_element(RandomAccessIter first, RandomAccessIter nth,
                               RandomAccessIter last, Compare comp);
  template<class ExecutionPolicy, class RandomAccessIter>
    void nth_element(ExecutionPolicy&& exec, // freestanding-deleted
                     RandomAccessIter first, RandomAccessIter nth,
                     RandomAccessIter last);
  template<class ExecutionPolicy, class RandomAccessIter, class Compare>
    void nth_element(ExecutionPolicy&& exec, // freestanding-deleted
                     RandomAccessIter first, RandomAccessIter nth,
                     RandomAccessIter last, Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr I
        nth_element(I first, I nth, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr borrowed_iterator_t<R>
        nth_element(R&& r, iterator_t<R> nth, Comp comp = {}, Proj proj = {});
  }
  // バイナリサーチ
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr ForwardIter lower_bound(ForwardIter first, ForwardIter last,
                                      const T& value);
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type,
           class Compare>
    constexpr ForwardIter lower_bound(ForwardIter first, ForwardIter last,
                                      const T& value, Compare comp);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             class T = projected_value_t<I, Proj>,
             indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
      constexpr I
          lower_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>,
             indirect_strict_weak_order
                 <const T*, projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr borrowed_iterator_t<R>
        lower_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});
  }
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr ForwardIter upper_bound(ForwardIter first, ForwardIter last,
                                      const T& value);
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type,
           class Compare>
    constexpr ForwardIter upper_bound(ForwardIter first, ForwardIter last,
                                      const T& value, Compare comp);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             class T = projected_value_t<I, Proj>,
             indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
      constexpr I
          upper_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
    template<forward_range R, class T, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>,
             indirect_strict_weak_order
                 <const T*, projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr borrowed_iterator_t<R>
        upper_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});
  }
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr pair<ForwardIter, ForwardIter>
      equal_range(ForwardIter first, ForwardIter last, const T& value);
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type,
           class Compare>
    constexpr pair<ForwardIter, ForwardIter>
      equal_range(ForwardIter first, ForwardIter last, const T& value, Compare comp);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             class T = projected_value_t<I, Proj>,
             indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
      constexpr subrange<I>
        equal_range(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>,
             indirect_strict_weak_order
                 <const T*, projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr borrowed_subrange_t<R>
        equal_range(R&& r, const T& value, Comp comp = {}, Proj proj = {});
  }
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type>
    constexpr bool binary_search(ForwardIter first, ForwardIter last,
                                 const T& value);
  template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type,
           class Compare>
    constexpr bool binary_search(ForwardIter first, ForwardIter last,
                                 const T& value, Compare comp);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             class T = projected_value_t<I, Proj>,
             indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
      constexpr bool binary_search(I first, S last, const T& value,
                                   Comp comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             class T = projected_value_t<iterator_t<R>, Proj>,
             indirect_strict_weak_order
                 <const T*, projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr bool binary_search(R&& r, const T& value, Comp comp = {}, Proj proj = {});
  }
  // パーティション
  template<class InputIter, class Pred>
    constexpr bool is_partitioned(InputIter first, InputIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    bool is_partitioned(ExecutionPolicy&& exec, // freestanding-deleted
                        ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<input_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr bool is_partitioned(I first, S last, Pred pred, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr bool is_partitioned(R&& r, Pred pred, Proj proj = {});
  }
  template<class ForwardIter, class Pred>
    constexpr ForwardIter partition(ForwardIter first, ForwardIter last, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class Pred>
    ForwardIter partition(ExecutionPolicy&& exec, // freestanding-deleted
                          ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<permutable I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr subrange<I> partition(I first, S last, Pred pred, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      requires permutable<iterator_t<R>>
      constexpr borrowed_subrange_t<R> partition(R&& r, Pred pred, Proj proj = {});
  }
  template<class BidirectionalIter, class Pred>
    BidirectionalIter stable_partition(BidirectionalIter first,                  // ホスト環境
                                       BidirectionalIter last, Pred pred);
  template<class ExecutionPolicy, class BidirectionalIter, class Pred>
    BidirectionalIter stable_partition(ExecutionPolicy&& exec,                   // ホストされた
                                       BidirectionalIter first,
                                       BidirectionalIter last, Pred pred);
  namespace ranges {
    template<bidirectional_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      requires permutable<I>
      subrange<I> stable_partition(I first, S last, Pred pred, Proj proj = {});  // ホストされた
    template<bidirectional_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      requires permutable<iterator_t<R>>
      borrowed_subrange_t<R> stable_partition(R&& r, Pred pred, Proj proj = {}); // ホスト環境
  }
  template<class InputIter, class OutputIter1,
           class OutputIter2, class Pred>
    constexpr pair<OutputIter1, OutputIter2>
      partition_copy(InputIter first, InputIter last,
                     OutputIter1 out_true, OutputIter2 out_false, Pred pred);
  template<class ExecutionPolicy, class ForwardIter, class ForwardIter1,
           class ForwardIter2, class Pred>
    pair<ForwardIter1, ForwardIter2>
      partition_copy(ExecutionPolicy&& exec, // freestanding-deleted
                     ForwardIter first, ForwardIter last,
                     ForwardIter1 out_true, ForwardIter2 out_false, Pred pred);
  namespace ranges {
    template<class I, class O1, class O2>
      using partition_copy_result = in_out_out_result<I, O1, O2>;
    template<input_iterator I, sentinel_for<I> S,
             weakly_incrementable O1, weakly_incrementable O2,
             class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>
      requires indirectly_copyable<I, O1> && indirectly_copyable<I, O2>
      constexpr partition_copy_result<I, O1, O2>
        partition_copy(I first, S last, O1 out_true, O2 out_false,
                       Pred pred, Proj proj = {});
    template<input_range R, weakly_incrementable O1, weakly_incrementable O2,
             class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      requires indirectly_copyable<iterator_t<R>, O1> &&
               indirectly_copyable<iterator_t<R>, O2>
      constexpr partition_copy_result<borrowed_iterator_t<R>, O1, O2>
        partition_copy(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {});
  }
  template<class ForwardIter, class Pred>
    constexpr ForwardIter
      partition_point(ForwardIter first, ForwardIter last, Pred pred);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_unary_predicate<projected<I, Proj>> Pred>
      constexpr I partition_point(I first, S last, Pred pred, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
      constexpr borrowed_iterator_t<R>
        partition_point(R&& r, Pred pred, Proj proj = {});
  }
  // マージ
  template<class InputIter1, class InputIter2, class OutputIter>
    constexpr OutputIter merge(InputIter1 first1, InputIter1 last1,
                               InputIter2 first2, InputIter2 last2, OutputIter result);
  template<class InputIter1, class InputIter2, class OutputIter,
           class Compare>
    constexpr OutputIter merge(InputIter1 first1, InputIter1 last1,
                               InputIter2 first2, InputIter2 last2,
                               OutputIter result, Compare comp);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter>
    ForwardIter merge(ExecutionPolicy&& exec, // freestanding-deleted
                      ForwardIter1 first1, ForwardIter1 last1,
                      ForwardIter2 first2, ForwardIter2 last2, ForwardIter result);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter, class Compare>
    ForwardIter merge(ExecutionPolicy&& exec, // freestanding-deleted
                      ForwardIter1 first1, ForwardIter1 last1,
                      ForwardIter2 first2, ForwardIter2 last2,
                      ForwardIter result, Compare comp);
  namespace ranges {
    template<class I1, class I2, class O>
      using merge_result = in_in_out_result<I1, I2, O>;
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less,
             class Proj1 = identity, class Proj2 = identity>
      requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
      constexpr merge_result<I1, I2, O>
        merge(I1 first1, S1 last1, I2 first2, S2 last2, O result,
              Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, weakly_incrementable O,
             class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
      requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
      constexpr merge_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
        merge(R1&& r1, R2&& r2, O result,
              Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  template<class BidirectionalIter>
    void inplace_merge(BidirectionalIter first, BidirectionalIter middle,         // ホスト環境
                       BidirectionalIter last);
  template<class BidirectionalIter, class Compare>
    void inplace_merge(BidirectionalIter first, BidirectionalIter middle,         // ホストされた
                       BidirectionalIter last, Compare comp);
  template<class ExecutionPolicy, class BidirectionalIter>
    void inplace_merge(ExecutionPolicy&& exec,                                    // ホスト環境
                       BidirectionalIter first, BidirectionalIter middle,
                       BidirectionalIter last);
  template<class ExecutionPolicy, class BidirectionalIter, class Compare>
    void inplace_merge(ExecutionPolicy&& exec,                                    // ホストされた
                       BidirectionalIter first, BidirectionalIter middle,
                       BidirectionalIter last, Compare comp);
  namespace ranges {
    template<bidirectional_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      I inplace_merge(I first, I middle, S last, Comp comp = {}, Proj proj = {}); // ホスト環境
    template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      borrowed_iterator_t<R> inplace_merge(R&& r, iterator_t<R> middle,           // ホスト環境
                                           Comp comp = {}, Proj proj = {});
  }
  // 集合演算
  template<class InputIter1, class InputIter2>
    constexpr bool includes(InputIter1 first1, InputIter1 last1,
                            InputIter2 first2, InputIter2 last2);
  template<class InputIter1, class InputIter2, class Compare>
    constexpr bool includes(InputIter1 first1, InputIter1 last1,
                            InputIter2 first2, InputIter2 last2, Compare comp);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    bool includes(ExecutionPolicy&& exec, // freestanding-deleted
                  ForwardIter1 first1, ForwardIter1 last1,
                  ForwardIter2 first2, ForwardIter2 last2);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class Compare>
    bool includes(ExecutionPolicy&& exec, // freestanding-deleted
                  ForwardIter1 first1, ForwardIter1 last1,
                  ForwardIter2 first2, ForwardIter2 last2, Compare comp);
  namespace ranges {
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
             indirect_strict_weak_order
                 <projected<I1, Proj1>, projected<I2, Proj2>> Comp = ranges::less>
      constexpr bool includes(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {},
                              Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2,
             class Proj1 = identity, class Proj2 = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R1>, Proj1>,
                  projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
      constexpr bool includes(R1&& r1, R2&& r2, Comp comp = {},
                              Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  template<class InputIter1, class InputIter2, class OutputIter>
    constexpr OutputIter set_union(InputIter1 first1, InputIter1 last1,
                                   InputIter2 first2, InputIter2 last2,
                                   OutputIter result);
  template<class InputIter1, class InputIter2, class OutputIter, class Compare>
    constexpr OutputIter set_union(InputIter1 first1, InputIter1 last1,
                                   InputIter2 first2, InputIter2 last2,
                                   OutputIter result, Compare comp);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter>
    ForwardIter set_union(ExecutionPolicy&& exec, // freestanding-deleted
                          ForwardIter1 first1, ForwardIter1 last1,
                          ForwardIter2 first2, ForwardIter2 last2,
                          ForwardIter result);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter, class Compare>
    ForwardIter set_union(ExecutionPolicy&& exec, // freestanding-deleted
                          ForwardIter1 first1, ForwardIter1 last1,
                          ForwardIter2 first2, ForwardIter2 last2,
                          ForwardIter result, Compare comp);
  namespace ranges {
    template<class I1, class I2, class O>
      using set_union_result = in_in_out_result<I1, I2, O>;
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less,
             class Proj1 = identity, class Proj2 = identity>
      requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
      constexpr set_union_result<I1, I2, O>
        set_union(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {},
                  Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, weakly_incrementable O,
             class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
      requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
      constexpr set_union_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>
        set_union(R1&& r1, R2&& r2, O result, Comp comp = {},
                  Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  template<class InputIter1, class InputIter2, class OutputIter>
    constexpr OutputIter set_intersection(InputIter1 first1, InputIter1 last1,
                                          InputIter2 first2, InputIter2 last2,
                                          OutputIter result);
  template<class InputIter1, class InputIter2, class OutputIter, class Compare>
    constexpr OutputIter set_intersection(InputIter1 first1, InputIter1 last1,
                                          InputIter2 first2, InputIter2 last2,
                                          OutputIter result, Compare comp);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter>
    ForwardIter set_intersection(ExecutionPolicy&& exec, // freestanding-deleted
                                 ForwardIter1 first1, ForwardIter1 last1,
                                 ForwardIter2 first2, ForwardIter2 last2,
                                 ForwardIter result);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter, class Compare>
    ForwardIter set_intersection(ExecutionPolicy&& exec, // freestanding-deleted
                                 ForwardIter1 first1, ForwardIter1 last1,
                                 ForwardIter2 first2, ForwardIter2 last2,
                                 ForwardIter result, Compare comp);
  namespace ranges {
    template<class I1, class I2, class O>
      using set_intersection_result = in_in_out_result<I1, I2, O>;
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less,
             class Proj1 = identity, class Proj2 = identity>
      requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
      constexpr set_intersection_result<I1, I2, O>
        set_intersection(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                         Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, weakly_incrementable O,
             class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
      requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
      constexpr set_intersection_result<borrowed_iterator_t<R1>,
                                        borrowed_iterator_t<R2>, O>
        set_intersection(R1&& r1, R2&& r2, O result,
                         Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  template<class InputIter1, class InputIter2, class OutputIter>
    constexpr OutputIter set_difference(InputIter1 first1, InputIter1 last1,
                                        InputIter2 first2, InputIter2 last2,
                                        OutputIter result);
  template<class InputIter1, class InputIter2, class OutputIter, class Compare>
    constexpr OutputIter set_difference(InputIter1 first1, InputIter1 last1,
                                        InputIter2 first2, InputIter2 last2,
                                        OutputIter result, Compare comp);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter>
    ForwardIter set_difference(ExecutionPolicy&& exec, // freestanding-deleted
                               ForwardIter1 first1, ForwardIter1 last1,
                               ForwardIter2 first2, ForwardIter2 last2,
                               ForwardIter result);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter, class Compare>
    ForwardIter set_difference(ExecutionPolicy&& exec, // freestanding-deleted
                               ForwardIter1 first1, ForwardIter1 last1,
                               ForwardIter2 first2, ForwardIter2 last2,
                               ForwardIter result, Compare comp);
  namespace ranges {
    template<class I, class O>
      using set_difference_result = in_out_result<I, O>;
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less,
             class Proj1 = identity, class Proj2 = identity>
      requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
      constexpr set_difference_result<I1, O>
        set_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                       Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, weakly_incrementable O,
             class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
      requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
      constexpr set_difference_result<borrowed_iterator_t<R1>, O>
        set_difference(R1&& r1, R2&& r2, O result,
                       Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  template<class InputIter1, class InputIter2, class OutputIter>
    constexpr OutputIter set_symmetric_difference(InputIter1 first1, InputIter1 last1,
                                                  InputIter2 first2, InputIter2 last2,
                                                  OutputIter result);
  template<class InputIter1, class InputIter2, class OutputIter, class Compare>
    constexpr OutputIter set_symmetric_difference(InputIter1 first1, InputIter1 last1,
                                                  InputIter2 first2, InputIter2 last2,
                                                  OutputIter result, Compare comp);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter>
    ForwardIter set_symmetric_difference(ExecutionPolicy&& exec, // freestanding-deleted
                                         ForwardIter1 first1, ForwardIter1 last1,
                                         ForwardIter2 first2, ForwardIter2 last2,
                                         ForwardIter result);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class ForwardIter, class Compare>
    ForwardIter set_symmetric_difference(ExecutionPolicy&& exec, // freestanding-deleted
                                         ForwardIter1 first1, ForwardIter1 last1,
                                         ForwardIter2 first2, ForwardIter2 last2,
                                         ForwardIter result, Compare comp);
  namespace ranges {
    template<class I1, class I2, class O>
      using set_symmetric_difference_result = in_in_out_result<I1, I2, O>;
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less,
             class Proj1 = identity, class Proj2 = identity>
      requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
      constexpr set_symmetric_difference_result<I1, I2, O>
        set_symmetric_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
                                 Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, weakly_incrementable O,
             class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>
      requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
      constexpr set_symmetric_difference_result<borrowed_iterator_t<R1>,
                                                borrowed_iterator_t<R2>, O>
        set_symmetric_difference(R1&& r1, R2&& r2, O result, Comp comp = {},
                                 Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  // ヒープ操作
  template<class RandomAccessIter>
    constexpr void push_heap(RandomAccessIter first, RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr void push_heap(RandomAccessIter first, RandomAccessIter last,
                             Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr I push_heap(I first, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr borrowed_iterator_t<R> push_heap(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class RandomAccessIter>
    constexpr void pop_heap(RandomAccessIter first, RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr void pop_heap(RandomAccessIter first, RandomAccessIter last,
                            Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr I pop_heap(I first, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr borrowed_iterator_t<R> pop_heap(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class RandomAccessIter>
    constexpr void make_heap(RandomAccessIter first, RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr void make_heap(RandomAccessIter first, RandomAccessIter last,
                             Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr I make_heap(I first, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr borrowed_iterator_t<R> make_heap(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class RandomAccessIter>
    constexpr void sort_heap(RandomAccessIter first, RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr void sort_heap(RandomAccessIter first, RandomAccessIter last,
                             Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S,
             class Comp = ranges::less, class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr I sort_heap(I first, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr borrowed_iterator_t<R> sort_heap(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class RandomAccessIter>
    constexpr bool is_heap(RandomAccessIter first, RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr bool is_heap(RandomAccessIter first, RandomAccessIter last,
                           Compare comp);
  template<class ExecutionPolicy, class RandomAccessIter>
    bool is_heap(ExecutionPolicy&& exec, // freestanding-deleted
                 RandomAccessIter first, RandomAccessIter last);
  template<class ExecutionPolicy, class RandomAccessIter, class Compare>
    bool is_heap(ExecutionPolicy&& exec, // freestanding-deleted
                 RandomAccessIter first, RandomAccessIter last, Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
      constexpr bool is_heap(I first, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr bool is_heap(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class RandomAccessIter>
    constexpr RandomAccessIter
      is_heap_until(RandomAccessIter first, RandomAccessIter last);
  template<class RandomAccessIter, class Compare>
    constexpr RandomAccessIter
      is_heap_until(RandomAccessIter first, RandomAccessIter last, Compare comp);
  template<class ExecutionPolicy, class RandomAccessIter>
    RandomAccessIter
      is_heap_until(ExecutionPolicy&& exec, // freestanding-deleted
                    RandomAccessIter first, RandomAccessIter last);
  template<class ExecutionPolicy, class RandomAccessIter, class Compare>
    RandomAccessIter
      is_heap_until(ExecutionPolicy&& exec, // freestanding-deleted
                    RandomAccessIter first, RandomAccessIter last, Compare comp);
  namespace ranges {
    template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
      constexpr I is_heap_until(I first, S last, Comp comp = {}, Proj proj = {});
    template<random_access_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr borrowed_iterator_t<R>
        is_heap_until(R&& r, Comp comp = {}, Proj proj = {});
  }
  // 最小値と最大値
  template<class T> constexpr const T& min(const T& a, const T& b);
  template<class T, class Compare>
    constexpr const T& min(const T& a, const T& b, Compare comp);
  template<class T>
    constexpr T min(initializer_list<T> t);
  template<class T, class Compare>
    constexpr T min(initializer_list<T> t, Compare comp);
  namespace ranges {
    template<class T, class Proj = identity,
             indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
      constexpr const T& min(const T& a, const T& b, Comp comp = {}, Proj proj = {});
    template<copyable T, class Proj = identity,
             indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
      constexpr T min(initializer_list<T> r, Comp comp = {}, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
      constexpr range_value_t<R> min(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class T> constexpr const T& max(const T& a, const T& b);
  template<class T, class Compare>
    constexpr const T& max(const T& a, const T& b, Compare comp);
  template<class T>
    constexpr T max(initializer_list<T> t);
  template<class T, class Compare>
    constexpr T max(initializer_list<T> t, Compare comp);
  namespace ranges {
    template<class T, class Proj = identity,
             indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
      constexpr const T& max(const T& a, const T& b, Comp comp = {}, Proj proj = {});
    template<copyable T, class Proj = identity,
             indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
      constexpr T max(initializer_list<T> r, Comp comp = {}, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
      constexpr range_value_t<R> max(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class T> constexpr pair<const T&, const T&> minmax(const T& a, const T& b);
  template<class T, class Compare>
    constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);
  template<class T>
    constexpr pair<T, T> minmax(initializer_list<T> t);
  template<class T, class Compare>
    constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);
  namespace ranges {
    template<class T>
      using minmax_result = min_max_result<T>;
    template<class T, class Proj = identity,
             indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
      constexpr minmax_result<const T&>
        minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {});
    template<copyable T, class Proj = identity,
             indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
      constexpr minmax_result<T>
        minmax(initializer_list<T> r, Comp comp = {}, Proj proj = {});
    template<input_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
      constexpr minmax_result<range_value_t<R>>
        minmax(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class ForwardIter>
    constexpr ForwardIter min_element(ForwardIter first, ForwardIter last);
  template<class ForwardIter, class Compare>
    constexpr ForwardIter min_element(ForwardIter first, ForwardIter last,
                                      Compare comp);
  template<class ExecutionPolicy, class ForwardIter>
    ForwardIter min_element(ExecutionPolicy&& exec, // freestanding-deleted
                            ForwardIter first, ForwardIter last);
  template<class ExecutionPolicy, class ForwardIter, class Compare>
    ForwardIter min_element(ExecutionPolicy&& exec, // freestanding-deleted
                            ForwardIter first, ForwardIter last,
                            Compare comp);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
      constexpr I min_element(I first, S last, Comp comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr borrowed_iterator_t<R>
        min_element(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class ForwardIter>
    constexpr ForwardIter max_element(ForwardIter first, ForwardIter last);
  template<class ForwardIter, class Compare>
    constexpr ForwardIter max_element(ForwardIter first, ForwardIter last,
                                      Compare comp);
  template<class ExecutionPolicy, class ForwardIter>
    ForwardIter max_element(ExecutionPolicy&& exec, // freestanding-deleted
                            ForwardIter first, ForwardIter last);
  template<class ExecutionPolicy, class ForwardIter, class Compare>
    ForwardIter max_element(ExecutionPolicy&& exec, // freestanding-deleted
                            ForwardIter first, ForwardIter last,
                            Compare comp);
  namespace ranges {
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
      constexpr I max_element(I first, S last, Comp comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr borrowed_iterator_t<R>
        max_element(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class ForwardIter>
    constexpr pair<ForwardIter, ForwardIter>
      minmax_element(ForwardIter first, ForwardIter last);
  template<class ForwardIter, class Compare>
    constexpr pair<ForwardIter, ForwardIter>
      minmax_element(ForwardIter first, ForwardIter last, Compare comp);
  template<class ExecutionPolicy, class ForwardIter>
    pair<ForwardIter, ForwardIter>
      minmax_element(ExecutionPolicy&& exec, // freestanding-deleted
                     ForwardIter first, ForwardIter last);
  template<class ExecutionPolicy, class ForwardIter, class Compare>
    pair<ForwardIter, ForwardIter>
      minmax_element(ExecutionPolicy&& exec, // freestanding-deleted
                     ForwardIter first, ForwardIter last, Compare comp);
  namespace ranges {
    template<class I>
      using minmax_element_result = min_max_result<I>;
    template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
             indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
      constexpr minmax_element_result<I>
        minmax_element(I first, S last, Comp comp = {}, Proj proj = {});
    template<forward_range R, class Proj = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R>, Proj>> Comp = ranges::less>
      constexpr minmax_element_result<borrowed_iterator_t<R>>
        minmax_element(R&& r, Comp comp = {}, Proj proj = {});
  }
  // 境界値
  template<class T>
    constexpr const T& clamp(const T& v, const T& lo, const T& hi);
  template<class T, class Compare>
    constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare comp);
  namespace ranges {
    template<class T, class Proj = identity,
             indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
      constexpr const T&
        clamp(const T& v, const T& lo, const T& hi, Comp comp = {}, Proj proj = {});
  }
  // 辞書順比較
  template<class InputIter1, class InputIter2>
    constexpr bool lexicographical_compare(InputIter1 first1, InputIter1 last1,
                                           InputIter2 first2, InputIter2 last2);
  template<class InputIter1, class InputIter2, class Compare>
    constexpr bool lexicographical_compare(InputIter1 first1, InputIter1 last1,
                                           InputIter2 first2, InputIter2 last2,
                                           Compare comp);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2>
    bool lexicographical_compare(ExecutionPolicy&& exec, // freestanding-deleted
                                 ForwardIter1 first1, ForwardIter1 last1,
                                 ForwardIter2 first2, ForwardIter2 last2);
  template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2,
           class Compare>
    bool lexicographical_compare(ExecutionPolicy&& exec, // freestanding-deleted
                                 ForwardIter1 first1, ForwardIter1 last1,
                                 ForwardIter2 first2, ForwardIter2 last2,
                                 Compare comp);
  namespace ranges {
    template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2,
             sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
             indirect_strict_weak_order
                 <projected<I1, Proj1>, projected<I2, Proj2>> Comp = ranges::less>
      constexpr bool
        lexicographical_compare(I1 first1, S1 last1, I2 first2, S2 last2,
                                Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
    template<input_range R1, input_range R2, class Proj1 = identity,
             class Proj2 = identity,
             indirect_strict_weak_order
                 <projected<iterator_t<R1>, Proj1>,
                            projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
      constexpr bool
        lexicographical_compare(R1&& r1, R2&& r2, Comp comp = {},
                                Proj1 proj1 = {}, Proj2 proj2 = {});
  }
  // 三方向比較アルゴリズム
  template<class InputIter1, class InputIter2, class Cmp>
    constexpr auto lexicographical_compare_three_way(InputIter1 b1, InputIter1 e1,
                                                     InputIter2 b2, InputIter2 e2,
                                                     Cmp comp)
        -> decltype(comp(*b1, *b2));
  template<class InputIter1, class InputIter2>
    constexpr auto lexicographical_compare_three_way(InputIter1 b1, InputIter1 e1,
                                                     InputIter2 b2, InputIter2 e2);
  // 順列
  template<class BidirectionalIter>
    constexpr bool next_permutation(BidirectionalIter first,
                                    BidirectionalIter last);
  template<class BidirectionalIter, class Compare>
    constexpr bool next_permutation(BidirectionalIter first,
                                    BidirectionalIter last, Compare comp);
  namespace ranges {
    template<class I>
      using next_permutation_result = in_found_result<I>;
    template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
             class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr next_permutation_result<I>
        next_permutation(I first, S last, Comp comp = {}, Proj proj = {});
    template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr next_permutation_result<borrowed_iterator_t<R>>
        next_permutation(R&& r, Comp comp = {}, Proj proj = {});
  }
  template<class BidirectionalIter>
    constexpr bool prev_permutation(BidirectionalIter first,
                                    BidirectionalIter last);
  template<class BidirectionalIter, class Compare>
    constexpr bool prev_permutation(BidirectionalIter first,
                                    BidirectionalIter last, Compare comp);
  namespace ranges {
    template<class I>
      using prev_permutation_result = in_found_result<I>;
    template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
             class Proj = identity>
      requires sortable<I, Comp, Proj>
      constexpr prev_permutation_result<I>
        prev_permutation(I first, S last, Comp comp = {}, Proj proj = {});
    template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>
      requires sortable<iterator_t<R>, Comp, Proj>
      constexpr prev_permutation_result<borrowed_iterator_t<R>>
        prev_permutation(R&& r, Comp comp = {}, Proj proj = {});
  }
}

クラステンプレート std::ranges::in_fun_result

namespace std::ranges {
  template<class I, class F>
  struct in_fun_result {
    [[no_unique_address]] I in;
    [[no_unique_address]] F fun;
    template<class I2, class F2>
      requires convertible_to<const I&, I2> && convertible_to<const F&, F2>
    constexpr operator in_fun_result<I2, F2>() const & {
      return {in, fun};
    }
    template<class I2, class F2>
      requires convertible_to<I, I2> && convertible_to<F, F2>
    constexpr operator in_fun_result<I2, F2>() && {
      return {std::move(in), std::move(fun)};
    }
  };
}

クラステンプレート std::ranges::in_in_result

namespace std::ranges {
  template<class I1, class I2>
  struct in_in_result {
    [[no_unique_address]] I1 in1;
    [[no_unique_address]] I2 in2;
    template<class II1, class II2>
      requires convertible_to<const I1&, II1> && convertible_to<const I2&, II2>
    constexpr operator in_in_result<II1, II2>() const & {
      return {in1, in2};
    }
    template<class II1, class II2>
      requires convertible_to<I1, II1> && convertible_to<I2, II2>
    constexpr operator in_in_result<II1, II2>() && {
      return {std::move(in1), std::move(in2)};
    }
  };
}

クラステンプレート std::ranges::in_out_result

namespace std::ranges {
  template<class I, class O>
  struct in_out_result {
    [[no_unique_address]] I in;
    [[no_unique_address]] O out;
    template<class I2, class O2>
      requires convertible_to<const I&, I2> && convertible_to<const O&, O2>
    constexpr operator in_out_result<I2, O2>() const & {
      return {in, out};
    }
    template<class I2, class O2>
      requires convertible_to<I, I2> && convertible_to<O, O2>
    constexpr operator in_out_result<I2, O2>() && {
      return {std::move(in), std::move(out)};
    }
  };
}

クラステンプレート std::ranges::in_in_out_result

namespace std::ranges {
  template<class I1, class I2, class O>
  struct in_in_out_result {
    [[no_unique_address]] I1 in1;
    [[no_unique_address]] I2 in2;
    [[no_unique_address]] O  out;
    template<class II1, class II2, class OO>
      requires convertible_to<const I1&, II1> &&
               convertible_to<const I2&, II2> &&
               convertible_to<const O&, OO>
    constexpr operator in_in_out_result<II1, II2, OO>() const & {
      return {in1, in2, out};
    }
    template<class II1, class II2, class OO>
      requires convertible_to<I1, II1> &&
               convertible_to<I2, II2> &&
               convertible_to<O, OO>
    constexpr operator in_in_out_result<II1, II2, OO>() && {
      return {std::move(in1), std::move(in2), std::move(out)};
    }
  };
}

クラステンプレート std::ranges::in_out_out_result

namespace std::ranges {
  template<class I, class O1, class O2>
  struct in_out_out_result {
    [[no_unique_address]] I  in;
    [[no_unique_address]] O1 out1;
    [[no_unique_address]] O2 out2;
    template<class II, class OO1, class OO2>
      requires convertible_to<const I&, II> &&
               convertible_to<const O1&, OO1> &&
               convertible_to<const O2&, OO2>
    constexpr operator in_out_out_result<II, OO1, OO2>() const & {
      return {in, out1, out2};
    }
    template<class II, class OO1, class OO2>
      requires convertible_to<I, II> &&
               convertible_to<O1, OO1> &&
               convertible_to<O2, OO2>
    constexpr operator in_out_out_result<II, OO1, OO2>() && {
      return {std::move(in), std::move(out1), std::move(out2)};
    }
  };
}

クラステンプレート std::ranges::min_max_result

namespace std::ranges {
  template<class T>
  struct min_max_result {
    [[no_unique_address]] T min;
    [[no_unique_address]] T max;
    template<class T2>
      requires convertible_to<const T&, T2>
    constexpr operator min_max_result<T2>() const & {
      return {min, max};
    }
    template<class T2>
      requires convertible_to<T, T2>
    constexpr operator min_max_result<T2>() && {
      return {std::move(min), std::move(max)};
    }
  };
}

クラステンプレート std::ranges::in_found_result

namespace std::ranges {
  template<class I>
  struct in_found_result {
    [[no_unique_address]] I in;
    bool found;
    template<class I2>
      requires convertible_to<const I&, I2>
    constexpr operator in_found_result<I2>() const & {
      return {in, found};
    }
    template<class I2>
      requires convertible_to<I, I2>
    constexpr operator in_found_result<I2>() && {
      return {std::move(in), found};
    }
  };
}

クラステンプレート std::ranges::in_value_result

namespace std::ranges {
template<class I, class T>
  struct in_value_result {
    [[no_unique_address]] I in;
    [[no_unique_address]] T value;
    template<class I2, class T2>
      requires convertible_to<const I&, I2> && convertible_to<const T&, T2>
    constexpr operator in_value_result<I2, T2>() const & {
      return {in, value};
    }
    template<class I2, class T2>
      requires convertible_to<I, I2> && convertible_to<T, T2>
    constexpr operator in_value_result<I2, T2>() && {
      return {std::move(in), std::move(value)};
    }
  };
}

クラステンプレート std::ranges::out_value_result

namespace std::ranges {
template<class O, class T>
  struct out_value_result {
    [[no_unique_address]] O out;
    [[no_unique_address]] T value;
    template<class O2, class T2>
      requires convertible_to<const O&, O2> && convertible_to<const T&, T2>
    constexpr operator out_value_result<O2, T2>() const & {
      return {out, value};
    }
    template<class O2, class T2>
      requires convertible_to<O, O2> && convertible_to<T, T2>
    constexpr operator out_value_result<O2, T2>() && {
      return {std::move(out), std::move(value)};
    }
  };
}